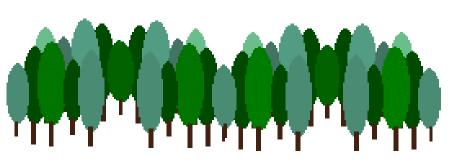


Using HyspIRI Derived Parameters in Climate Related Models

K. Fred Huemmrich 3rd HyspIRI Science Workshop August 24, 2010

- May be very large
- Represent a significant unknown
 both in strength and even sign
- Need to understand
 - Ecosystem responses to climate change
 - Climate forcing from ecosystem change

Land-Atmosphere Interactions


- Include feedbacks between surface radiation, the vegetation-soil system, and the atmosphere
- These interactions produce complex exchanges of energy and water that influence climate
- There are wide disparities among current climate models in characterizing land-atmosphere interactions
- Further understanding and improving representation of the processes governing land-atmosphere interactions are important for climate predictions and projections

Change in Climate Forcing

- Concentrations of Greenhouse Gases
 & Aerosols
- Energy Balance (e.g. latent and sensible heat fluxes, albedo)

• Temperature

- Precipitation
- Humidity
- Wind

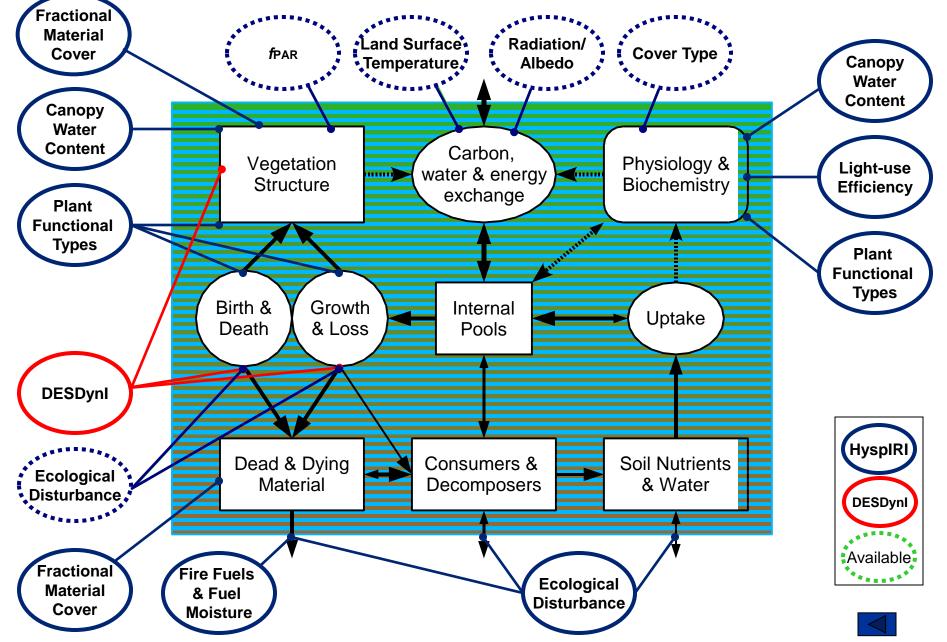
Biophysical & Biogeochemical Changes

- Carbon Storage
- Canopy Roughness & Phenology
- Surface Albedo
- Evapotranspiration
- Trace Gas Fluxes

Ecosystem Response

- Reproduction, Recruitment, Mortality
- Species Interactions
- Species Distribution & Composition
- Photosynthesis, Respiration, Biomass

Adapted from Kuppers et al., 2007


Ecosystem Responses

- Productivity
 - CO₂ Fertilization effects
- Leaf area
- Phenology
- Canopy roughness
- Rooting depth
- Respiration
- Soil water holding capacity
- Changes in disturbance regimes – e.g. fire frequency, insect outbreaks
- Nutrient cycling
- Species composition

- Feedbacks act through
 - Biophysical pathways that alter energy and water exchange
 - Alters albedo, evapotranspiration rates, vegetation structure, and phenology
 - Directly altering temperature, humidity, precip, convection, and wind
 - Biogeochemical pathways that alter carbon and nutrient cycles affecting uptake and release of greenhouse gasses and aerosols
 - CO₂
 - CH₄
 - N₂O
 - Black carbon
 - Aerosols
 - Volatile Organic Compounds

- Some unknowns
 - Geographic shifts in species and plant functional types (PFT)
 - May create non-analog communities,
 - with potentially unique functional consequences
 - CO₂ fertilization
 - Effects water and energy balance
 - Constrained by N and P
 - non-CO₂ greenhouse gas release
 - CH₄
 - N₂O

Conceptual Ecosystem Flux Model

Modeling Approaches

- Diagnostic models
 - Describes fluxes, e.g. Light Use Efficiency models
 - Inputs from HyspIRI include
 - PRI
 - Chlorophyll concentrations
 - Canopy water content
 - *f*PAR
 - Albedo
 - Radiometric surface temperature

Diagnostic Models

- Diagnostic models and HyspIRI
 - HyspIRI will provide an unprecedented seasonally varying global description of vegetation type and status
 - Large-scale data use in synthesis studies
 - Output at spatial scale appropriate for land management
 - Model output will be important for applications such as carbon monitoring
 - VSWIR will not provide a dense time series
 - Merge with temporally frequent broadband data to improve temporal resolution

Diagnostic Models

- Mission too short to directly observe climate change effects
 - Provides validation data sets for prognostic models
 - Use to develop and test algorithms that can feed into prognostic models
 - e.g. examining effect of foliage N content on photosynthetic stress responses in different plant functional types

Modeling Approaches

- Prognostic models
 - Can be utilized to provide predictions and projections
 - Can be extrapolated to describe different conditions
- HyspIRI produced input data fields
 - New types of data for inputs, e.g. better descriptions of Plant Functional Types
 - Provide seasonally changing input values
 - Higher spatial resolution and improved classification provide better understanding of mixtures and disturbance

HyspIRI Model Inputs

- Leaf nitrogen
 - photosynthetic rates
- Disturbances
 - Thinning and diffuse disturbances
 - May have important effects on carbon balance
- Species distributions (functional biodiversity)
- Biomass in low stature ecosystems (grasslands, shrublands, etc.)
 - Cover types with the largest areas
 - May be significant biomass changes with increased shrubs

Plant Functional Types

- In models PFT are often defined based on landcover classification
 - HyspIRI will produce improved landcover classifications
 - Improved descriptions of complex mosaic of anthropogenic landscapes
- Different ways of grouping species into PFT for climate studies
 - By response to climate change (functional response group)
 - By role in climate forcing (functional effects group)
 - May need to detect differences in populations in terms of responses

Plant Functional Types

- PFT often used to define values for a number of variables in models
- PFT can be defined by direct measurement of a suite of variables or continuous fields of these variables could be determined from HyspIRI
- Variables such as:
 - Green/nongreen fractions, green leaf area
 - Maximum photosynthetic rate, Photosynthetic efficiency
 - Specific leaf area
 - Foliage Nitrogen, Pigment concentrations
 - Leaf water content
 - Albedo
 - Sensitivity to climate change (e.g., inferring rooting depth from stress responses)
 - Canopy roughness
 - Seasonality

Conclusions/Issues

- Model improvements occur through
 - Improved algorithms
 - Utilization of new types of information
 - Improved accuracy of input data fields
 - More and better data for validation

Conclusions/Issues

- How do we facilitate using HyspIRI data to improve models?
 - Development of ways to organize and manage the huge data volumes from HyspIRI
 - Ability to extract level 2+ data for study sites
 - Standardized gridding of global products

– Cloud-free composites

• Tools to make it easy to link HyspIRI data with other data products in synthesis studies