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Photosynthesis:
A temperature-mediated photochemical reaction
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Nutrient dynamics:

Plant allocation and use of resources

Cell structure (water use),
shade tolertance (N use),
recalcitrance (decomposition)
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Key concepts for climate change research:

Photosynthesis is driven by light, temperature, water
availability, nutrients, etc.

If we can measure specific processes of photosynthesis
using imaging spectroscopy and thermal (temperature)
measurements, then:

* We can measure changes in photosynthetic rates, and:

* Assess changes in carbon assimilation by vegetation and
changes in vegetation function associated with AT.

e Global mission necessary to evaluate changes in
photosynthesis that occur over large areas.
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Definition: V(c)max — maximum rate of carboxylation
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Photosynthesis — The Chloroplast
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Definition: Jmax — electron transport rate
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Background:

Vigmax: Measurement of process by which Rubisco
catalyzes RuBP with CO, to produce the carbon compounds
that eventually become triose phosphates (G3P, PGAL)

Triose phosphates are the building block for sugars and
starches.

J .o Transport of electrons through the thylakoid
membrane is critical to producing NADPH and ATP, which

provide the metabolic energy necessary to produce triose
phosphates.
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Biochemical modeling of photosynthesis

e Limited by
— Rubisco
— RuBP regeneration
— triose phosphate
G3P utilization utilization

— e Determine key
Vemax Jmax metabolic variables

— Vcmax: Rubisco
RUBP activity

— Jmax: Electron
transport

A4, =min(4,,4;,4,)— R,

Rubisco

Assimilation (A; pmol m=2 s'1)

Intercellular CO, (C;; pmol mol -1)
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How will climate change affect composition and metabolism?

AVIRIS 2009

e Across the range —
AVIRIS 2008

of a species**

e Photosynthetic
capacity varies
according to
climate

e Changesin
climate should be
expressed in
changes in rates
(Vcmax, Jmax)
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How will climate change affect composition and metabolism?

e Hyperspectral
imagery

e Field collection
— @Gas exchange
— Spectra

— Canopy
temperature

e Examine regional
trends
— Lat/Long variation
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Where does HysplRI fit in?

HysplRI spectral and thermal measurements provide the
opportunity to directly measure the photochemical
processes associated with carbon assimilation (e.g., A,..,)
and respiration by plants across the ranges of species.

These HysplRI products provide the potential to identify
changes in photosynthetic processes associated with
climate change (e.g., temperature) across species.
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Detection of leaf metabolic rates using spectroscopy

Palisade
Parenchyma




Physiological data in glasshouse study

e Three temperature regimes

—13/20° C, 18/25° C, 23/30
> C

* Leaf gas exchange

- chaX, JmaX, Amass, Aarea

e Morphology and nutrition
— SLA, Leaf N

* Leaf optical properties (350-

= | fa Y e NI
2500 nmm)
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Empirical evidence: Cottonwood and Aspen
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Physiological measurements across temperature regimes
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Predictions using leaf spectra and PLSR (%N example)
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Biotron measurements show thermal effects on leaf metabolism

2007 25071
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Spectra are responsive to temp.-driven variations in metabolism
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Examples: LMA - based on hypothesized relationships

Baraboo Hills Ottawa NE Minnesota
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Examples: V(c)max — based on hypothesized relationships

Baraboo Hills Ottawa NF Minnesota
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Examples: Jmax — based on hypothesized relationships
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Remote sensing of genetic diversity in aspen:
Directly associated with vegetation response to climate change

Multispectral and hyperspectral data
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