

Deriving soil moisture and sediment mobility using future HyspIRI-derived thermal inertia





Michael Ramsey and Steve Scheidt

Dept. of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA

Scheidt, S., Ramsey, M. & Lancaster, N., Determining soil moisture and sediment availability at White Sands Dune Field, NM from apparent thermal inertia data, *JGR – Earth Surface, in press,* 2009.



### **HyspIRI Relevant Science**

- TQ3: Water Use and Availability
  - Can we improve early detection, mitigation, and impact assessment of droughts at local to regional scales anywhere on the globe?
  - How does the partitioning of precipitation into ET, surface runoff and ground-water recharge change during drought?

### CQ5: Surface Composition and Change

 How is the composition of exposed terrestrial surface responding to anthropogenic and non anthropogenic drivers (e.g., desertification, weathering, climate change, human disturbance)?

# NASA

# What Is Missing in the CQ's?

- Thermophysical Properties
  - interpret diurnal, seasonal, or climatic surface and subsurface temperature variations
    - <u>thermal inertia</u>: controls the amplitude of the daily thermal curve, I = (kρc)<sup>1/2</sup>
    - <u>albedo:</u> controls the average temperature fluctuation
    - <u>ATI:</u> apparent thermal inertial,  $ATI = (1-A)/(T_d-T_n)$
  - derived products:
    - soil moisture (linkage to future SMAP data)
    - particle size, density
    - soil erosion potential in arid/semi-arid lands
      - > direct relationship to surface roughness/soil moisture

# **Background: Soil Moisture**

- Measurements difficult in large arid lands
  - permeable sands typically experience a quick drying
  - field measurements over a large geographical region are difficult and expensive
    - remote location and difficult working conditions
    - the need for very sensitive in-situ sensors to measure the low water / high salinity content of desert soils
  - soil mobility
    - important for desertification/agriculture conditions
    - Iocal to regional climate impacts
    - the upper few centimeters are the most critical for understanding erosion potential

## **Background: Soil Moisture**

- Using Microwave Sensors
  - regional to continental scale (e.g., PSR, AMSR-E)
  - future Soil Moisture Active Passive (SMAP)
    - spatial resolution of 1-3 km every 12 hours
    - surface roughness and vegetation
      - > important for sediment transport studies
  - spatial resolution of 25 km (AMSR-E) and 1-3 km (SMAP) limits the interpretation of soil moisture for specific landforms
    - example, the White Sands eolian system is only 26 km<sup>2</sup>
      - ~1 AMSR-E pixel, ~80 SMAP pixels
      - ~190,000 HyspIRI pixels

# Background: White Sands, NM

- Understand the relationship between
  - apparent thermal inertia (ATI) ↔ thermal inertia ↔
    surface soil moisture ↔ sediment availability

### • Objectives:

- how are the differences in ATI over time explained for the same geographic areas?
  - can these be used to determine soil moisture/sediment mobility?

 how do the calculations of ATI compare between ASTER and MODIS Terra?



# NASA

### **Background: White Sands, NM**

### Eolian System

- gypsum dominated
- material is transported by W winds from ephemeral playa lakes
  - timing is determined by wet-dry cycles
  - resupply determined by the availability of the gypsum created by evaporation and mineral formation



area of overlap of the ASTER day and night images (green arrow - Lake Lucero)



### **Background: Thermal Inertia**

#### Previous studies

- have used thermal inertia to estimate soil moisture
  - Price (1985), Xue (1986), Zhang et al. (2002), Zhenhua & Yingshi (2006), Cai et al. (2007)

#### New work

[Scheidt et al., 2009]

- reproduced a thermal inertia model for ASTER data Xue and Cracknell (1995)
  - programmed in IDL/ENVI
  - White Sands data are now presented in actual thermal inertia units (TI) units rather than ATI
  - TI is related to soil moisture and sediment availability



### **Models**



Soil moisture vs. thermal inertia as a function of soil density reproduced from lookup (Mae and Xue, 1990)



Fécan et al. (1999) show the erosion threshold velocity ratio as a function of soil moisture

the Mae and Xue (1990) look up tables have been combined with the Fécan et al. (1999) relationship



$$P = \frac{(1-a)S_0C_t}{\Delta T\sqrt{\omega}} \left\{ \frac{A_1 \left[ \cos(\omega t_2 - \delta_1) - \cos(\omega t_1 - \delta_1) \right]}{\sqrt{1 + \frac{1}{b} + \frac{1}{2b^2}}} + \frac{A_2 \left[ \cos(\omega t_2 - \delta_2) - \cos(\omega t_1 - \delta_2) \right]}{\sqrt{2 + \frac{\sqrt{2}}{b} + \frac{1}{2b^2}}} \right\}$$

#### Data Inputs

a = albedo

 $\Delta T$  = temperature difference

 $t_n = day (n=1) and night (n=2) time$ 

1

 $\mathbf{S}_0 = \text{solar constant}$ 

- $\omega = angular \ velocity \ of \ Earth$
- $C_t = atmospheric transmissivity$
- $\delta_n = phase difference^*$
- $A_n$  = coefficient of Fourier series\*
- \* values are dependent on solar declination, latitude, and maximum daytime temperature

#### Data Output

Xue and Cracknell (1995)

*P*: thermal inertia (J m<sup>-2</sup> K<sup>-1</sup> s<sup>-1/2</sup> or TIU) *ATI*: (1-a)/⊿T

#### Sources of Error

**Albedo:** dependent on instrument and calculation

**▲ T:** satellite overpasses are not at maximum and minimum diurnal temperatures

**C**<sub>t</sub>: assumed to be constant or corrected

**time:** overpasses are 36 hours apart (potential error and in-scene variability, i.e., cloud, rain, etc.)



- Examined ASTER and MODIS apparent thermal inertia (ATI)
  - calculated over 8 years at White Sands, NM
  - 54 (day) and 70 (night) cloud-free ASTER images
    - seven day-night image pairs were selected
    - closest day/night pairs (36 hour difference)





### **ASTER** Data

### • ASTER (2000-2008)

- all data were processed to Level 2 (surface reflectance and kinetic temperature)
- focus on two time pairs
  - > April 2006 (dry period) and April 2007 (wet period)

| Related Image and Weather Station Statistics |            |               |              |             |
|----------------------------------------------|------------|---------------|--------------|-------------|
| Image Pair                                   |            | Image         | Prior 30-day | %Area Playa |
| Date                                         | ΔT air (K) | <b>ΔT (K)</b> | Precip (mm)  | Inundation  |
| Feb 7-8, '02                                 | ND         | 16.8          | ND           | 15          |
| Nov 6-7, '02                                 | 27         | 22.1          | 26           | 0           |
| Nov 22-23, '02                               | 27         | 17.3          | 21           | 0           |
| May 3-4, '04                                 | 25         | 33.5          | 21           | 0           |
| April 7-8,'06                                | 23.8       | 27            | 0            | 0           |
| April 26-27, '07                             | 22.2       | 32            | 15           | 50          |
| March 11-12,'08                              | ND         | 26.5          | ND           | 0           |



### **ASTER VNIR Data**

#### 27 April 2007 (wet period)

#### 8 April 2006 (dry period)





### ASTER: 8 April 2006

#### albedo







### **ASTER Relative Albedo Changes**





### **ASTER Derived Thermal Inertia**





### **ASTER Derived Soil Moisture**



range of soil moisture values (9% - 25%)



### **ASTER Derived Soil Moisture**





### **ASTER Derived Soil Moisture**









### **ASTER Erosion Ratio**



time-averaged image of the unit less erosion threshold wind velocity ratio  $(u_{\theta}^*/u_{d}^*)$ 



# MODIS: 14 March 2008





### **GOES: 14 March 2008**





- Retrieved TI, Soil Moisture, and Wind Threshold Velocity
  - at a high spatial resolution using ASTER
  - for eolian systems
    - soil moisture is the most important parameter where estimating sediment availability
    - values are slightly higher than would be expected for the dunes
      - > model needs further refinement and testing in other regions
      - bowever, the general trends within the dunes and over time are valid
      - > detected a dramatic decrease in soil moisture in March 2008
        - several days before the largest dust storm at White Sands in over a decade (used as a monitoring tool with HyspIRI?)



### extra slides



### **MODIS Albedo**

- MODIS products
  - MOD43:16-day averaged albedo product
    - not retrieved for White Sands
    - false snow or cloud detection?
  - MOD09: reflectance product
    - can be used if assumed to be lambertian surface
  - solution: scale the ASTER albedo to MODIS albedo using scene statistics of the same pixels







### **Albedo Calculation**

- Compared ASTER and MODIS
  - albedo derived from standard reflectance products
  - broadband albedo calculations from Liang (2000)
    - published for both MODIS and ASTER
  - ASTER albedo model:
    - $a = 0.484*b_1 + 0.335*b_3 0.324*b_5 + 0.551*b_6 + 0.305*b_8 0.367*b_9 0.0015$

- MODIS albedo model: •  $a = 0.160^{*}b_1 + 0.291^{*}b_2 - 0.243^{*}b_3 + 0.116^{*}b_4 + 0.291^{*}b_2 + 0.291^{*}b_3 + 0.291^{*}b_3 + 0.291^{*}b_3 + 0.291^{*}b_4 + 0.291^{*}b_2 + 0.291^{*}b_3 + 0.291^{*}b_3 + 0.291^{*}b_4 + 0.291^{*}b_3 + 0.291$ 

0.112\*b<sub>5</sub> - 0.081\*b<sub>7</sub> - 0.0015