EO-1 Lessons Learned Hyperion Calibration Strategy

Steve Ungar Lawrence Ong

HyspIRI Science Workshop-2 Pasadena – 13 August 2009

EO-1 Science Validation Team (SVT)

Instrument Team

- Validate/re-establish and refine pre-launch characterizations
- Provide technology validation
- Participate on Science Validation Team
- NASA Selected Investigators
 - Conduct scene based instrument performance characterizations
 - Measure ability of instruments to make Landsat-like observations
 - Assess capability for addressing earth remote sensing applications
 - Assist in technology validation
 - Facilitate Commercial Applications (CRSP/SSC)
- International Collaborators
 - Argentina, Australia, Canada, Italy, Japan, Singapore

EO-1 Hyperion Instrument Team

Jay Pearlman Pete Jureke TRW Hyperion Scientist TRW Calibration Lead

Rob GreenHyperion Calibration ScientistTom ChrienAVIRIS Calibration Guru

Steve Ungar Lawrence Ong Brian Markham Jeff Mendehall Jim Storey Mission Scientist MSO Calibration Lead Landsat Transfer Radiometer (LXR) ALI Calibration Scientist Landsat Geometric Correction

SVT Investigator Research Topics

Southern Hemisphere Campaign: ARGENTINA – AUSTRALIA – ELSEWHERE

Research Topic	Principal Investigator
Forest Logging in Amazonia	Asner, G. P., University of Colorado
Desertification	Asner, G. P., University of Colorado
Forest Composition/Function	Martin, M., University of New Hampshire
Inter-Sensor Calibration	Huete, A. R., University of Arizona, Tucson
Arid Vegetation Abundance	Mustard, J. F., Brown University.
Tropical Forest Burn Scars	Liew, S. C., National University of Singapore
Forest Composition/Structure	Townsend, P. A., University of Maryland
Land Cover/Land Use	White, W. A., Crawford, M., University of Texas at Austin
Sustainable Forest Development	Goodenough, D. G., Natural Resources Canada
Monitoring Forest &	Gong, P., University of California, Berkeley
Non-Native Plant Species	McGwire, K. Desert Research Institute

SVT Investigator Research Topics (continued)

Research Topic	Principal Investigator
Invasive Plants: Chinese Tallow	Ramsey III, E. W., USGS, Denver
Invasive Leafy Spurge	Root, R., USGS
Agricultural Monitoring	Liang, S., USDA, Maryland
Inter-Satellite Comparison	Moran, M. S. USDA, Tucson, Arizona.
Fire Hazard Assessment	Roberts, D. A., University of California, Santa Barbara
Geologic Validation of Hyperion	Kruse, F. A., AIG, Boulder, Colorado
Volcanic Debris flow Hazards	Crowley, J. K., USGS, Reno, Nevada
Analysis of Hot Spots	Flynn, L., Wright, R., University of Hawaii
Environmental Monitoring of Coastal/Inland Water in Japan	Matsunaga, T., Tokyo Institute of Technology.
Oceanography, Pollution and Urban Mapping	Abrams, M. J., JPL, California ; R. Bianchi and L. Alberotanza, NRC, Italy .
Glaciological Applications	Bindschadler, R., NASA/GSFC, Maryland

SVT Investigator Research Topics (continued)

Research Topic	Principal Investigator
Ecological Applications in Yellowstone National Park	Boardman, J. W., AIG, Colorado
Commercial Applications	Cassady, P. E., Boeing, Washington
Radiometric and Spatial Evaluation of ALI and Hyperion	Biggar, S. F., Thome, K., University of Arizona
Atmospheric Correction	Carlson, B. E., NASA /GISS, New York
Atmospheric Correction and Sparse Vegetation Mapping	Goetz, A. F. H., University of Colorado
Australian Hyperspectral Calibration and Validation Sites	Jupp, D. L. B., CSRIO, Australia
Integrated Assessment of EO-1 and Landsat Instrument Suites	Meyer, D. J., EDC, South Dakota
Canopy Temperature Estimation	Smith, J. A., NASA GSFC, Maryland
Lunar Calibration	Kieffer, H., USGS, Flagstaff, AZ

EO-1 Calibration Strategy

Prelaunch

- Calibrate and characterize (component and system level)
- Characterize the calibration and characterization
- <u>Ensure</u> conformity with, and comparison against, NMI laboratory standards

Post-launch

- Lamps
- <u>Solar</u>
- Lunar (astronomical)
- Vicarious
- "Special Targets" (limb scanning, active illumination)
- Statistical (trending, 90° yaw)
- Direct comparison against other satellites

CALIBRATION MEASUREMENTS STRATEGY FOR PASSIVE OPTICAL (0.35-3.5 µm) SYSTEMS

OBSERVING SYSTEM CATEGORY

- MS ≡ Multi-Spectral
- WIS ≡ Wedge Imaging Spectrometer
- GIS ≡ Grating Imaging Spectrometer

OBSERVING SYSTEM PARAMETERS

- $F(\lambda) \equiv$ Spectral response function
- $R_N \equiv Radiometric response for detector N$
- $S_o \equiv Dark response$
- $(x,y)_{N} \equiv$ Geometric response (detector pointing vectors)
- $\mathsf{MTF} \equiv \mathsf{Modulation transfer function}$

CALIBRATION MEASUREMENTS STRATEGY

	PARAMETER														
		F(λ)		R _N			S。			(x, y) _N			MTF		
	MS	WIS	GIS	MS	WIS	GIS	MS	WIS	GIS	MS	WIS	GIS	MS	WIS	GIS
COMPONENT TESTS AND ANALYSIS		\bigcirc	—	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	—			\bigcirc	\bigcirc	\bigcirc
SUBSYSTEM TESTS: TELESCOPE, GIS, WIS AND MS/PAN	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc
INSTRUMENT LEVEL LABORATORY TESTS	\bigcirc	\bigcirc					\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
ON-ORBIT MEASUREMENTS															
- SOLAR DIFFUSER	_						\bigcirc	\bigcirc	\bigcirc					_	—
- CLOSED APERTURE COVER	_				—										
- INTERNAL SOURCES				\bigcirc	\bigcirc	\bigcirc	-	—							—
- LUNAR SCANS				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc
- EARTH SCENES		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

SECONDARY MEASUREMENT

PRIMARY MEASUREMENT

CALIBRATION MEASUREMENTS STRATEGY

	PARAMETER														
	F(λ)			R _N			S _o			(x, y) _N			MTF		
	MS	WIS	GIS	MS	WIS	GIS	MS	WIS	GIS	MS	WIS	GIS	MS	WIS	GIS
COMPONENT TESTS AND ANALYSIS		\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc					0	\bigcirc
SUBSYSTEM TESTS: TELESCOPE, GIS, WIS AND MS/PAN	0		0	0	0	0	0	0	0			0	0	0	0
INSTRUMENT LEVEL LABORATORY TESTS	0	\bigcirc					0	0	\bigcirc	\bigcirc	0		\bullet		
ON-ORBIT MEASUREMENTS - SOLAR DIFFUSER - CLOSED APERTURE COVER - INTERNAL SOURCES		-													
- LUNAR SCANS	_			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc
- EARTH SCENES		\cup	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

SECONDARY MEASUREMENT

PRIMARY MEASUREMENT

Image Quality (Edge Sharpness)

Lunar Image Expanded by a Factor of 8 Horizontal Slice Through Expanded Lunar Image Rise and Fall About 1 Pixel in Normal Image.

Hyperion Characteristics

Characteristic	Pre-launch Cal	On-orbit Cal
GSD (m)	29.88	30.38
Swath (km)	7.5	7.75
No. of Spectral Channels	220	200 (L1 data)
VNIR SNR (550-700nm)	144-161	140-190
SWIR SNR (~1225nm)	110	96
SWIR SNR (~2125nm)	40	38
VNIR X-trk Spec. Error	2.8nm@655nm	2.2nm
SWIR X-trk Spec. Error	0.6nm@1700nm	0.58
Spatial Co-Reg: VNIR	18% @ Pix #126	*
Spatial Co-Reg: SWIR	21% @ Pix #131	*
Abs. Radiometry(1Sigma)	<6%	3.40%
VNIR MTF @ 630nm	0.22-0.28	0.23-0.27
SWIR MTF @ 1650nm	0.25-0.27	0.28
VNIR Bandwidth (nm)	10.19-10.21	*
SWIR Bandwidth (nm)	10.08-10.09	*

* Consistent with Pre-Launch Calibration or not measured

Hyperion SNR

Hyperion Measured SNR										
550 nm 650 nm 700 nm 1025 nm 1225 nm 1575 nm 2125 nr										
161	144	147	90	110	89	40				

Post Launch MTF Validation Approach

- Calculate cross-track and intrack MTF using a step response and impulse response example
- Results of on-orbit analysis give good agreement with the prelaunch laboratory measurements

Example: Cross-track MTF

- Scene is Port Eglin from Dec 24, 2000. Bridge is the Mid-bay bridge. Bridge width is 13.02 meters.
- Bridge angle to the S/C direction is small so every 5th line is used to develop the high resolution bridge image.
- MTF result at Nyquist is between 0.39 to 0.42 while the pre-flight measurement was 0.42.

Special targets for characterization

Searchlights -California

> Gas Flares -Moomba

Planets -Venus

90 deg Yaw

Superctral Calibration – SWIR Superconductor of Spectral Features Solar Calibration Collect Atmospheric Collect Solar Solar Collect Collect

Process:

- Create Pseudo-Hyperion Spectra from reference: Modtran-3 for atmosphere, and Cary 5 & FTS measurements for diffuse reflectance of the cover
- Correlate Spectral Features: band number units of Hyperion max/min correlated with reference wavelength of max/min
- Calculate Band to Wavelength map: apply low order polynomial to fit the data over the entire SWIR regime

Hyperion Spectra – redAtmospheric Reference – blackDiffuse Reflectance of cover – blue

Desert Sites used for Vicarious Calibration

Lake Frome

RR Valley Arizaro/Barreal Blanco

EO-1 Accelerated Mission Southern Hemisphere Field Campaigns January – February 2001

Australian Test Sites

Argentine/AVIRIS Sites

Lake Frome Calibration Site

Barreal Blanco, Argentina

AVIRIS Twin Otter

Deployment coincident with EO-1 and L7 ETM+ overpasses

Ground Truth Site: Lake Frome, Au

Radiometric Calibration

- Ground Truth Referencing
 - Lake Frome, Au ground truth collected by CSIRO.
 - Barreal Blanco and Arizario Argentina ground truth collected by U. of Arizona and U. of Colorado
 - Ivanpah Playa ground truth collected by U. of Arizona
 - AVIRIS underflights

EVEOSD Vegetation Sampling

The EO-1 2001 Field Campaign

AVIRIS Overflights

E

OPEN

CLOSED

The EO-1 2001 Field Campaign

Barreal Blanco

The EO-1 2001 Field Campaign

Central Australia

The EO-1 2002 Field Campaign Salar de Arizaro - 11 Dec. 2002

EO-1 Hyperion Dark1 Response

EO-1 Hyperion Dark2 Response

% Change EO-1 Hyperion Lamp Cal. Response

% Change EO-1 Hyperion Lamp Cal. Response

% Change EO-1 Hyperion Normalized Solar Cal. Response

% Change EO-1 Hyperion Solar Cal. Response (normalized for solar distance)

Hyperion Lamp Cal. Signal to Noise Ratio (normalized solar mean / standard deviation)

Hyperion Solar Cal. Signal to Noise Ratio (normalized solar mean / standard deviation)

Hyperion Lamp Trends

- There is a significant initial decrease in lamp output during the first year of operation.
- The lower wavelength channels (< 500 nm) exhibits the largest change.
- Changes in the SWIR channesI are less than 10%.
- For most bands the lamps appears to achieve some stability after year 4.

Hyperion Lamp Spectra

Lamps intensity shows some degradation over the entire spectral range over the 8 years of operation

Hyperion Solar Trends

- Changes in the solar panel on orbit are most pronounced during the first 3 years
- Most of the variations are within +/1 5% except for the longer wavelengths.
- For most bands the lamps appears to achieve some stability after year 4.

Solar Panel Spectra

Spectra of the solar panel show large degradation in the shorter wavelengths

Relative Change from Present

Relative Change from Present

Year

Year

Although inconsistent during early mission life, the solar and Lamp trends agree well after 4 years in orbit

Radiometric Calibration

- Lunar Calibration
 - Calculate Lunar spectral irradiance ($E_M(\lambda)$)
 - Compare to the USGS Robotic Lunar Observatory lunar irradiance model
- Intersatellite Comparison
 - Landsat 7
 - Sites Compared
 - CA Super Site Jan 2001
 - Railroad Valley Jan 2001
 - Lake Frome Jan 2001
 - Compared Bands 1, 2, 3, 5, 7 due to similarity of spectral responses
 - Terra comparisons forthcoming

Typical Lunation (aka Lunar Cycle)

USGS <u>Robotic Lunar Observatory</u> ROLO Model

 $I_{k} = \Omega_{p} \sum_{i=1}^{N_{p}} L_{i,k}$ $A_{k} = \frac{\pi \cdot I_{k}}{\Omega_{M} E_{k}}$

1 total lunation takes ~29.5 days

EO-1 views the moon monthly

(EO-1 ALI Pan band)

(EO-1 Hyperion)

Full Moon

Cumulative Spectral Radiance

EO-1 views the moon monthly

(EO-1 ALI Pan band)

(EO-1 Hyperion)

Full Moon

Cumulative Spectral Radiance

Extra-terrestrial calibration! (Views with the EO-1 ALI Pan band)

Venus

Jupiter

Half Moon

Extra-terrestrial calibration! (Views with the EO-1 ALI Pan band)

Photograph

ALI detections

Hyperion Lunar Spectra

The pitch rate across the moon is the same as that used for earth imaging. This results in a 8X oversampling of the moon.

Lunar Calibration Results

Hyperion Lunar Cal. Trends for Selected Bands

Why does Steve wear a hat?

SNR Calculated From Solar Calibration Data

SNR Calculated From Solar Calibration Data

Scene Based Estimate of Hyperion SNR (Source JPL AVIRIS LAB)

