Evapotranspiration Estimation with ASTER & MASTER over the Jornada Experiment Range, New Mexico, USA

Andy French
US Arid Land Agricultural Research Center, USDA/ARS
Tom Schmugge
Physical Sciences Lab, New Mexico State University

ASTER Composite over Jornada 2001-2003

Moderate/High Resolution TIR Data at Jornada

ASTER

- 2001 to 2003: 27 `clear' sky scenes; 90 m resolution
- 200+ scenes 2000 to 2009, including nighttime

MASTER

- 68 lines from 1999 to 2008; 7-15 m resolution

Evapotranspiration Estimation

- Fractional vegetation cover
- ·Land surface temperature
- ·Land cover type & plant height
- ·Near-surface meteorology

Evapotranspiration Estimation with a Two-Source approach

$$R_n$$
- $G = H + LE$

Sensible Heat (H)

$$H_{\rm soil} = \rho c_{\rm p} \frac{T_{\rm soil} - T_{\rm air}}{r_{\rm soil} + r_{\rm aero}}$$

$$r_{soil} = \frac{1}{a + bU_{soil}}$$

Latent Heat (LE)

$$\lambda E_{canopy} = \alpha f_{green} \frac{\Delta}{\Delta + \gamma} R_{canopy}$$

Composite Temperature

$$T_{comp}^4 = f^*T_{veg}^4 + (1-f)^*T_{soil}^4$$

-Better parameterization of soil-canopy energy interactions than single-source -Detection of crop stress

Remote Sensing of Instantaneous Evapotranspiration

ET Estimation with TIR Needed to detect water stress

NDVI vs. Temperature inverse relationship NDVI does not explain all variability of surface fluxes. i.e.Penman-Monteith ET insufficient.

NDVI for Jornada & Rio Grande 2001-2003

Effect of Emissivity on Land Surface Temperature

Errors in estimated emissivity can result in LST retrieval errors of 2-3 C

Depending upon resistance term, these errors can exceed 50 W/m^2

$$H = \rho c_p \frac{\Delta T}{r_a}$$

Graybody Temperature Optimization

- •Initialize LST computation using profile-based τ , L↑, L↓
- •Import regression data for L↑ vs. T
- Minimize multispectral LST deviations

Linear regression

LST Estimation Error

Transmissivity

Jornada Emissivities 6 October 2002

ASTER (90 m)

MASTER (5 m)

Effect of Emissivity upon Land Cover Classification

Can determine estimation of surface resistance

- -Distinguish between bare soil and senescent vegetation
- -Better estimation of canopy geometry & canopy height $z_m = h/8$
- -Improve estimation of r_a and r_s

Change Verification: LAI & Emissivity 2001-2003

LAI

Emissivity

Land Cover Estimation from Emissivity & NDVI

B11 Emissivity

NDVI

Site	Emissivity	NDVI
Grass	0.99	0.52
Transition	0.81	0.81
Mesquite	0.86	0.50

Effect of Emissivity on Net Longwave Flux

Rainfall Effect on LST & Emissivity

LST

ASTER B11 emissivity

Benefits of HyspIRI for Evapotranspiration Studies

- Observational Achievements:
- -Improved temperature over Landsat
- -Emissivity change assessment
- -Moderate spatial resolution
- -Greatly improved temporal resolution

Soil Temperature Modeling: Disaggregation from Canopy Temperatures

$$T_{Soil} = T_{Veg} \times (1 + (k-1)) \times \sin \left[\frac{\pi}{12} \times (t - 6 - \phi) \right]$$

Expectations

- Greatly improved temporal estimation of ET with more frequent LST observations
- Continuation of ASTER legacy for spatial and spectral sampling
- High potential for improved land cover classification & plant height estimation using hyperspectral observations
- Continued need for SVAT models to provide ET time series

Winter Wheat

NDVI

Grazingland

NDVI

Surface Energy Balance ASTER El Reno, Oklahoma 4 Sep 2000

Sensible Heat

> Latent Heat

