HyspIRI Scaling Issues For Coastal Ocean Science

Richard C. Zimmerman, Victoria J. Hill and Tanique Rush Bio-Optics Research Group, Dept. Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk VA

W. Paul Bissett

Florida Environmental Research Institute & WEOGEO Inc., Portland OR

Heidi M. Dierssen

Coastal Ocean Laboratory for Optics and Remote Sensing, University of Connecticut, Avery Point CT

Dave Siegel and Dan Reed

Institute for Computational Earth System Science and Marine Science Institute, University of California Santa Barbara

NASA HyspIRI Workshop

August 11-13, 2009

The Aquatic Macrophyte Opportunities:

- Floating kelp canopy provides a strong reflecting target
 - no overlying water column
- Seagrasses grow in optically shallow water – within the visible range of remote sensing

How can we use imaging spectroscopy to remotely quantify abundance and productivity of giant kelp forests and seagrass meadows?

- The need
 - Better understand and manage the dynamics of macrophyte "engineers" that define ecosystems
- The challenge
 - Distribution
 - Patchy across time and space
 - Bounded by land (bright pixels) and deep water (dark pixels)
 - Water depths and optical properties are highly variable
- The opportunity for repeated coverage
 - Temporal dynamics of populations
 - Coastal biogeochemistry C, N, P

<u>Giant Kelp abundance is</u> <u>dynamic across time and space</u>

- Oceanographic Conditions
 - Storm-dependent mortality
 - Winter on central coast
 - Nutrient limitation
 - Summer in Southern California
 - Urchin-related barren grounds that persist for years

Floating kelp optical signatures are distinct from land and water

Spectral Library for Campus Point at 3m Resolution

• Converting NDVI into absolute kelp abundance and productivity:

- Optical BAI = NDVI/0.71
- True BAI = Optical BAI * 9.04
- Biomass = True BAI/13.3
- **Productivity = Biomass * 14.7**

NASA HyspIRI Workshop

August 11-13, 2009

NDVI Derived Density and Productivity of Giant Kelp: Carmel Bay November 2004

- 15 Km of irregular coastline
- 1.7 Km² of kelp canopy
- Biomass: 1400 metric tons dry kelp biomass
- NPP: 19 metric tons dry biomass d⁻¹

Kelp Density	Kelp Productivity
Kg DW m ⁻²)	$(g DW m^{-2} d^{-1})$
0.54 - 0.61	8 – 9
0.62 - 0.68	9.1 – 10
0.69 – 0.75	10.1 – 11
0.75 - 0.82	11.1 – 12
0.83 – 0.88	12.1 – 13
0.89 – 0.95	13.1 - 14

NASA HyspIRI Workshop

NDVI Derived Density and Productivity of Giant Kelp: Santa Barbara Coastal LTER Region March 2006 Kelp Density (g DW m⁻²) Kelp Productivity (g DW m⁻² d⁻¹)

•	35	Km	mostly	linear	coastline
---	----	-----------	--------	--------	-----------

- 1.9 Km² kelp canopy
- Biomass: 1100 metric tons
- NPP: 17 metric tons per day

Image NASA Image © 2007 DigitalGlobe

8 - 9

9.1 - 10

10.1 - 11

11.1 - 12

12.1

131

NASA HyspIRI Workshop

August 11-13, 2009

0.54 - 0.61

0.62 - 0.68

0.69 - 0.75

0.75 - 0.82

0.83 - 0.88

0.89 - 0.95

1 km

Kelp retrieval depends on spatial resolution

August 11-13, 2009

Kelp retrieval depends on spatial resolution

August 11-13, 2009

Kelp retrieval depends on spatial resolution

NASA HyspIRI Workshop

August 11-13, 2009

Kelp retrieval depends on spatial resolution

NASA HyspIRI Workshop

Kelp retrieval depends on spatial resolution

To date, resolution-dependent biases are scene-dependent:

- Large, dense canopies (e.g. Carmel Bay) produce large positive bias
- Small, sparse canopies disappear (e.g. Gaviota)
- Canopies of intermediate size and density are "just right", at least to 60 m resolution

What controls the "Goldilocks" phenomenon?

- Patch dimension shape and continuity are fractal properties
 - What can they tell us about emergent ecological properties?
 - Connectivity, productivity and ecological stability?
- Density and proximity
 - averaging bright and dark pixels across the water-kelp-land continuum

Seagrasses also exhibit a remarkable degree of spatial variability at scales ranging from meters to km

Lee Stocking Island, Bahamas Dierssen et al. 2003

50 Km Algae A Seagrass Sediment

> Great Bahama Bank Dierssen et al. in review

St. Joseph's Bay, FL Hill et al. in prep

NASA HyspIRI Workshop

....that can be remarkably stable across time

igure 2. Colour-coded Landsat TM map of seagrass biomass near Lee Stocking Island. Land, deep water, and sandy areas without scagrasses are shown in black. Values in the legend are in g-dry wt. m⁻². The scale bar is one nautical mile (1.8 km).

1978 TM image of Exumas, Bahamas Armstrong 1993

2009 RGB image of Euxmas Bahamas From Google Earth

NASA HyspIRI Workshop

August 11-13, 2009

SAV has less impact on *R*_{rs} than floating kelp canopies.....

...and decreases as the water column deepens

NASA HyspIRI Workshop

We can remove water column effects if we know their optical properties *and* bathmetry

NASA HyspIRI Workshop

We can obtain bathymetry from

to 7 m in clear Bahamian water using R₅₅₅:R₆₇₀ band ratios Dierssen et al. 2003

and to 2 m in turbid coastal waters based on logarithmic intensity of R_{810} Bachmann et al. 2008, Hill et al. in prep

NASA HyspIRI Workshop

August 11-13, 2009

And in combination with knowledge of water column optical properties, retrieve R_b

from Hill et al. in prep

Retrieval of R_b of submerged macrophytes are most different between 550 and 700 nm....

....where water depth becomes increasingly important

NASA HyspIRI Workshop

Knowledge of *R*_b **provides a way to identify taxa (e.g. seagrasses) and retrieve biomass (e.g., LAI).....**

from Dierssen et al. 2003

NASA HyspIRI Workshop

St. Joseph's Bay, FL 1 Meter Resolution

NASA HyspIRI Workshop

St. Joseph's Bay, FL 10 Meter Resolution

NASA HyspIRI Workshop

St. Joseph's Bay, FL 20 Meter Resolution

NASA HyspIRI Workshop

St. Joseph's Bay, FL 40 Meter Resolution

St. Joseph's Bay, FL 60 Meter Resolution

NASA HyspIRI Workshop

August 11-13, 2009
Other Considerations for Routine Use of High Resolution Imaging Spectroscopy

- Tides will affect locally observed bathymetry:
 - Depth of water overlying SAV
 - Surface expression of giant kelp canopies
- Water column OPs are likely to vary across time and space
 - Needed to retrieve $R_{\rm b}$
 - Knowledge of bathymetry and stable bottom R_b (e.g. sand) may permit retrieval of water column OPs
 - Develop local algorithms to obtain OPs from routinely monitored WQ parameters
 - Gallegos C (2001) Estuaries 24:381-397

Conclusions

- Remotely sensed imaging spectroscopy:
 - Can quantify spatial and temporal patterns of macrophyte biomass and system productivity at resolutions up to 60 m
 - May be the only way to provide accurate data at the ecosystem scale needed for research and management
 - Time series observations represented an unprecedented opportunity to understand dynamics of these systems across time and space
- Effect of image resolution on retrieval needs to be investigated
 - Bathymetry, esp in shallow and high relief habitats, e.g. reefs, marsh fringes etc.
 - Averaging Rrs spectra across optically deep, optically shallow and land pixels
 - What causes the retrieval bias and the goldilocks effect?

NASA HyspIRI Workshop

