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How can we use imaging spectroscopy to 
remotely quantify abundance and productivity of 

giant kelp forests and seagrass meadows?
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– Better understand and manage the 
dynamics of macrophyte “engineers” that 
define ecosystems

• The challenge
– Distribution
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• Bounded by land (bright pixels) and deep water 

(dark pixels)
– Water depths and optical properties are 

highly variable
• The opportunity for repeated coverage

– Temporal dynamics of populations
– Coastal biogeochemistry – C, N, P
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Increasing Biomass

Increasing Biomass Isobestic
Region
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• Converting NDVI into absolute kelp abundance and productivity: 

• Optical BAI = NDVI/0.71
• True BAI = Optical BAI * 9.04
• Biomass = True BAI/13.3
• Productivity = Biomass * 14.7
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Carmel Bay

Santa Barbara Coastal LTER
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NDVI Derived Density and Productivity of 
Giant Kelp: Carmel Bay November 2004
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NDVI Derived Density and Productivity of 
Giant Kelp: Santa Barbara Coastal LTER 

Region March 2006
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Kelp retrieval depends on spatial 
resolution
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Kelp retrieval depends on spatial 
resolution
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Kelp retrieval depends on spatial 
resolution
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Kelp retrieval depends on spatial 
resolution
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Kelp retrieval depends on spatial 
resolution

Campus 
Point
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Seagrasses also exhibit a remarkable degree of spatial 
variability at scales ranging from meters to km

Seagrasses also exhibit a remarkable degree of spatial 
variability at scales ranging from meters to km

St. Joseph’s Bay, FL
Hill et al. in prep

5 km

50 Km

Great Bahama Bank
Dierssen et al. in review

[ ]3.8Log (530) 1.63bLAI R= −

Leaf Area Index

Lee Stocking Island, Bahamas
Dierssen et al. 2003



….that can be remarkably stable across time….that can be remarkably stable across time
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1978 TM image of Exumas, Bahamas
Armstrong 1993

2009 RGB image of Euxmas Bahamas
From Google Earth



SAV has less impact on Rrs than floating kelp 
canopies……
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…and decreases as the water column 
deepens

…and decreases as the water column 
deepens
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We can remove water column effects if we 
know their optical properties and

bathmetry

We can remove water column effects if we 
know their optical properties and

bathmetry
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We can obtain bathymetry from 
Rrs

We can obtain bathymetry from 
Rrs

to 7 m in clear Bahamian water using 
R555:R670 band ratios
Dierssen et al. 2003

and to 2 m in turbid coastal waters based on logarithmic 
intensity of R810

Bachmann et al. 2008, Hill et al. in prep
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And in combination with 
knowledge of water column optical 

properties, retrieve Rb

And in combination with 
knowledge of water column optical 

properties, retrieve Rb

from Hill et al. in prep
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Knowledge of Rb provides a way to identify taxa (e.g. 
seagrasses) and retrieve biomass (e.g., LAI)……..

Knowledge of Rb provides a way to identify taxa (e.g. 
seagrasses) and retrieve biomass (e.g., LAI)……..

from Dierssen et al. 2003
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Bathymetry LAI

St. Joseph’s Bay, FL 1 Meter Resolution

2.5 km
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Bathymetry

St. Joseph’s Bay, FL 10 Meter Resolution

LAI
2.5 km
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Bathymetry LAI

St. Joseph’s Bay, FL 20 Meter Resolution

2.5 km
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Bathymetry LAI

St. Joseph’s Bay, FL 40 Meter Resolution

2.5 km
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Bathymetry LAI

St. Joseph’s Bay, FL 60 Meter Resolution

2.5 km
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Other Considerations for Routine Use of 
High Resolution Imaging Spectroscopy
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• Tides will affect locally observed bathymetry:
– Depth of water overlying SAV
– Surface expression of giant kelp canopies

• Water column OPs are likely to vary across time and 
space
– Needed to retrieve Rb

– Knowledge of bathymetry and stable bottom Rb (e.g. sand) 
may permit retrieval of water column OPs

– Develop local algorithms to obtain OPs from routinely 
monitored WQ parameters

• Gallegos C (2001) Estuaries 24:381-397
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ConclusionsConclusions
• Remotely sensed imaging spectroscopy: 

– Can quantify spatial and temporal patterns of macrophyte 
biomass and system productivity at resolutions up to 60 m

– May be the only way to provide accurate data at the ecosystem 
scale needed for research and management

– Time series observations represented an unprecedented 
opportunity to understand dynamics of these systems across 
time and space 

• Effect of image resolution on retrieval needs to be 
investigated
– Bathymetry, esp in shallow and high relief habitats, e.g. reefs,

marsh fringes etc.

– Averaging  Rrs spectra across optically deep, optically shallow 
and land pixels

– What causes the retrieval bias and the goldilocks effect?
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