The Coupled Nature of C and N Cycles in Forest Ecosystems: Evidence and Uncertainties

Scott Ollinger, University of new Hampshire

HyspIRI Workshop, Pasadena, CA, 8/12/2009

C & N: Joined by a Shared Set of Biological Reactions

ANPP in Most Eastern U.S. Temperate Forests Scales with N Status, not LAI.

Canopy vs. ANPP

AVIRIS-Predicted Foliar Chemistry Used to Estimate Soil Nitrogen Cycling

Disturbance History and Species Effects

Nitrogen availability is a key constraint on carbon cycling in terrestrial ecosystems and it is largely in this capacity that the role of nitrogen in the climate system has been considered.

Nevertheless, broad-scale analyses rarely include spatial variation in plant N status as a driving variable. *WHY?*

1. Uncertainty about how leaf-level photosynthesisnitrogen relationships aggregate to whole canopies and ecosystems.

2. There are no methods to remotely sense canopy nitrogen concentrations at broad spatial scales.

APPROACH: Continental synthesis of CO₂ Flux data, field measurements, imaging spectroscopy and global satellite sensors

- Wind River Experimental Forest, WA
- 2 Willow Creek, WI
 - Howland, ME
 - Bartlett Experimental Forest, NH
 - Harvard Forest, MA
- 8 Niwot Ridge, CO
- 7 Morgan Monroe State Forest, IN
- 3 Duke Forest Deciduous, NC
- Duke Forest Pine, NC
 - Donaldson Tract, FL

Dashed Line: Leaflevel trend from Wright et al. 2004 global leaf traits data set.

Is there hope for continental-scale detection of canopy N?

CANOPY % N AND FULL SPECTRUM REFLECTANCE

Canopy N and MODIS Shortwave Albedo

MODIS Shortwave Albedo

Mid Growing Season Average

Extension to other biomes using FLUXNET

Extension to other biomes using FLUXNET

AVIRIS reflectance (left) used to calculate shortwave surface albedo (right).

- Bartlett, NH
- Hubbard Brook, NH
- Harvard Forest, MA
- Howland, ME
- Wind River, WA
- Campbell River (Harvested), BC
- Campbell River (Mature), BC

Landscape-scale patterns of %N and canopy structure

At 20 m spatial resolution, the N-based relationship holds.

No effect of canopy surface roughness (Rugosity)

DOES NITROGEN PLAY A PREVIOUSLY UNRECOGNIZED ROLE IN THE CLIMATE SYSTEM?

- C cycle effects and albedo effects typically viewed as separate mechanisms.
- Our results indicate that they are more intimately related and are linked via plant nitrogen status.
- This suggests a potential feedback in the climate system involving the N cycle as a regulator of both C cycling AND energy exchange.

Predicted Canopy Nitrogen and Photosynthetic Capacity in N. American Forests

Albedo	Nitrogen (g/100g)	СА <i>тах</i> (µmol C m ⁻² s ⁻¹)
0.061-0.080	0.60-0.87	13.9-17.2
0.081-0.100	0.88-1.16	17.3-20.7
0.101-0.120	1.17-1.45	20.8-24.1
0.121-0.140	1.46-1.73	24.2-27.5
0.141-0.160	1.74-2.02	27.6-31.0
0.161-0.180	2.03-2.31	31.1-34.4

Ollinger et al. 2008, PNAS

Nitrogen Deposition and Mid-Summer Shortwave Albedo

WHY ARE NITROGEN AND ALBEDO RELATED?

- Co-variation between leaf N concentrations and canopy structure?
- Co-variation between nitrogen and the cellular structure needed to support different rates of photosynthesis?

Leaf-Level Spectra from a Sub-set of Sites (MMSF, Niwot, Fraiser, GLEES)

Multiple regression of albedo vs. leaf %N and LMA: $R^2 = 0.84$

Take Home Messages:

1.Carbon and Nitrogen, and maybe even energy, are coupled in many terrestrial ecosystems.

2.We should do remote sensing/imaging spectroscopy to learn about how nature works, not just for the sake of doing more remote sensing.

Interactions between biogeochemical cycles and tree species composition

Plourde et al. 2007