## **GSFC Activities in Support of HyspIRI**

## Betsy Middleton (NASA/GSFC) Petya Campbell (NASA/UMBC)







## Earth Observing-1 (EO-1) Mission



EO-1 was designed to flight validate technologies and operational approaches applicable to future Earth observing missions. Launched on November 21, 2000, it is currently in its 9th year, with more than 40,000 scenes in archive.



http://eo1.gsfc.nasa.gov/

| M. ARLA               | ALI                            |                       |  |  |
|-----------------------|--------------------------------|-----------------------|--|--|
| Band<br>designations  | Band Names<br>(wavelength, μm) | Hyperion              |  |  |
| Pan                   | Pan (0.48 – 0.69)              |                       |  |  |
| DI A                  | MS-1p (0.433 – 0.453)          |                       |  |  |
| Blue                  | MS-1 (0.450 – 0.515)           |                       |  |  |
| Green                 | MS-2 (0.525 – 0.605)           | Continuous<br>Spectra |  |  |
| Red                   | MS-3 (0.633 – 0.690)           | 0.4 – 2.4 μm          |  |  |
|                       | MS-4 (0.775 – 0.805)           | 242 Bands             |  |  |
| NIK                   | MS-4p (0.845 – 0.890)          | Bandwidth:            |  |  |
|                       | MS-5p (1.20 – 1.30)            | 101111                |  |  |
| SWIR                  | MS-5 (1.55 – 1.75)             |                       |  |  |
|                       | MS-7 (2.08 – 2.35)             |                       |  |  |
| Spatial<br>Resolution | Pan: 10m, MS: 30m              | 30m                   |  |  |
| Swath width           | 37km                           | 7.5km                 |  |  |



## **EO-1 2009 Goals towards enabling HyspIRI**

- Providing spectroscopy data for sensors inter-calibration;
- Generating Validation Datasets validation of other sensors response and for validation of science products;
- Developing new EO-1 MSO science level products;
- Automated Tools & Intelligent Payload Module (IPM)– related support for data throughput;
- Rapid Remote Sensing and SensorWebs for Disaster response fire, flood, volcanoes;
- Sources of high spectral resolution data;
- Hyperion applications: Discrimination of land cover types and vegetation species composition (classifications), Spectral unmixing, Canopy Water content and Foliar chemistry, etc.

#### To date, over 42500 scenes have been acquired, 2001-2009



### EO-1 acquisitions during 2007-2009



These acquisitions could be summarized into three main categories: Science and disaster response, Global Land Survey (GLS2005 and GLS2010), and Calibration/Validation collects

## **Calibration Efforts** sensor inter-comparisons

Validation Activities evaluate products

### Comparison of the Hyperion integrated lunar responses with the USGS ROLO Lunar model



The Hyperion response has remained stable over the last eight years

## Solar Panel Spectra



Spectra of the solar panel show large degradation in the shorter wavelengths

#### <u>Cal/Val Targets:</u> Repeated Collections Coordinated by Committee on Earth Observing Satellites (CEOS/WGCV/IVOS)

#### **Test Site Gallery**

Gallery of Images for the Radiometry Sites



USGS: World-wide Test Sites for Sensor Characterization

A QUALITY ASSURANCE FRAMEWORK FOR

**RTH OBSERVATION** 

#### **CEOS/WGCV** Calibration Sites

- 1 Tuz Golu, Turkey \* (priority)
- 2 Frenchman Flat, USA
- 3 La Crau, France (only suitable for high resolution)
- 4 Dunhuang, China
- 5 Railroad Valley, USA
- 6 Ivanpah playa, USA
- 7 Negev, Israel
- 8 Libya 4
- 9 Mauritania 1
- 10 Mauritania 2
- 11 Algeria 3
- 12 Libya 1
- 13 Algeria 5



#### CEOS's Dome C 2008-2009 Inter-comparison

• FY2008, WGCV Pilot study for GEO Task DA-06-02: EO-1 participated by contributing data for intercomparison of AVHRR, MODIS and SeaWiFS.

• FY 2009, CEOS Dome C Instrument comparison underway: As part of this campaign, during the winter of 2008-2009 EO-1 collected a number of new images.



#### **CEOS/WGCV/IVOS Sites**



Earth Observing System Land Validation, EOS Transactions, 88(7)81-82.

|       | Site name                                   | Latitude     | Longitude    | IGBP Cover Type                       |
|-------|---------------------------------------------|--------------|--------------|---------------------------------------|
|       | I st priority                               |              |              |                                       |
| 1     | BARC- USDA ARS                              | 39.03        | -76.85       | Broadleaf Cropland                    |
| 2     | Barrow                                      | 71.322525    | -156.625881  | grassland                             |
| 3     | Bartlett Experimental Forest- New Hampshire | 44.06464     | -71.288077   | Mixed forest                          |
|       | British Colubmia, DF49                      | ?            | ?            |                                       |
| 4     | SERC                                        | 38 53'N      | -76 33' W    | Mixed Hardwoods                       |
| 5     | Bondville                                   | 40           | -88.29154    | BroadleaFLX Cropland                  |
| 6     | Vancouver Island, British Columbia, CA      | 49°52'7.8''N | 125°20'6.3"W | Douglas fir                           |
| 7     | BOREAS/BERMS SSA                            | 53.65        | -106.2001    | Southern Boreal Forest                |
| 8     | Harvard Forest                              | 42.53        | -72.17       | Northern Hrdwoods                     |
| 9     | Howland Forest (main tower)- Maine          | 45.20407     | -68.740278   | Mixed forest                          |
| 10    | Jornada                                     | 32.6         | -106.86      | Shrubland/Woodland                    |
| 11    | Konza Prairie                               | 39.08        | -96.56       | Grassland/Cereal Crop                 |
| 12    | Sevilleta                                   | 34.344       | -106.671     | Grassland/Cereal Crop                 |
| 13    | Wisc: NTL LTER - Park Falls                 | 45.9454      | -90.27248    | Needle leaf Forest                    |
| 14    | ARM/CART Ponca City (28/34 Landsat)         | 36.77        | -97.13       | Agriculture (Wheat)                   |
| 15    | Duke Forest-hardwoods- North Carolina       | 35.973582    | -79.10043    | Mixed forest                          |
|       | 10 10 10 10 10 10 10 10 10 10 10 10 10 1    | 184 - 0.5    | NS. 7 883    | 74 C 10                               |
| ]     | II ond priority                             |              |              |                                       |
| 16 I  | Metolius/Cascades OR (Landsat 45/29)        | 44.452432    | -121.557166  | Evergreen needle leaf forest          |
| 17    | Virginia (costal reserve)                   | 37.42        | -75.7        | Broadleaf Cropland                    |
| 18 /  | ARM/CART SGP                                | 36.64        | -97.5        | Grassland/Cereal Crop                 |
| 19 /  | ARM/CART Shider                             | 36.93        | -96.86       | Grassland                             |
| 20 0  | Cascades, Springfield, IL                   | 44.25        | -122.25      | forest                                |
| 21    | Walker, Oak Rdge, Tennessee, USA            | 35.96        | -84.31       | forest                                |
| 22    | WindRiverCraneSite, Washington              | 45.82049     | -121.95191   | forest                                |
| 23 (  | Québec, CA                                  | 49.69247     | -74.34204    | Mature site                           |
| 24 I  | Krasnoyarsk                                 | 57.27        | 91.6         | Deciduous needleleaf                  |
| 25    | Yakutsk-Larch Russia                        | 62.255       | 129.618889   | Larix gmelinii (100-160 yrs.)         |
| 26 2  | Zotino Russia                               | 60.8007972   | 89.350806    | Conferous forest, central Siberia     |
| 27    | Shortandy, Kazhstan                         | 51.5736111   | 71.259722    | dry step (short grass, wheat and hey) |
| 28 5  | St. Petersburg, Russia                      | 59° 56'N     | 30∘18'E      | Deciduous/conifer mixed forest        |
| 29 (  | Changbaishan, China                         | 42.4025      | 128.095833   | Deciduous/conifer mixed forest        |
| 30 I  | Hyytiala, Finland                           | 61.847415    | 24.29477     | Evergreen needleleaf forest           |
| 31 \$ | Sodankyla, Finland                          | 67.3618611   | 26.637833    | Evergreen needleleaf forest           |
| 32 1  | Avignon, France                             | 43.9163889   | 4.879167     | Cropland and deciduous broadleaf      |
| 33 I  | La Crau, France                             | 43.9163889   | 4.879167     | cropland (wheat, rice, corn, meadow)  |
| 34 I  | Barrax, Spain                               | 39∘3'44" N   | 2°6'10" W    | various crops                         |

# EO-1 ALI data for reefs and islands are used in the Mid-Decadal Global Land Surveys 2005 and 2010 (±2 yr)



Belize, ALI (RGB: bands 4-3-2)

## Plant Growth Experiment Site at USDA Beltsville Agricultural Research Center



The EOS Validation Site - Located at the USDA Beltsville Agricultural Research Center is part of an intensive multi-disciplinary project entitled Optimizing Production Inputs for Economic and Environmental Enhancement (OPE).

The site has four hydrologically bound watersheds, about 4 ha each labeled as A through D which feed a wooded riparian wetland and first-order stream.

Carbon and nitrogen cycle dynamics - are being probed with a hybrid fluorescence and reflectance remote sensing approach. An intensive ground sampling protocol was initiated in 2001.

## Remotely Sensed Reflectance Indices Tracking Corn Grain Yield



## **Biophysical Measurements**

#### **Canopy Optical Properties**

#### **Canopy Reflectance**

The ASD FieldSpec-Pro radiometer was used to measure radiance 1 m above plant canopies with a 220 field of view and a 00 nadir view zenith angle. The radiometer has 3 nm Full-Width at Half Maximum (FWHM) spectral resolution at a 1 nm sampling resolution.

#### Leaf Area Index

LAI was determined using the LI-2000 Plant Canopy Analyzer with a single above canopy and four below canopy data points at each *in situ* measurement location.





Reflectance and reflectance derivative spectra (x100) for high N (solid) and low N (dashed) field corn at five observation levels

- A) leaf integrating sphere with ASD spectral radiometer,
- B) above canopy at 1m with ASD spectral radiometer,
- C) AISA aircraft multispectral sensor,
- D) AVIRIS aircraft hyperspectral imager,
- E) EO-1 Hyperion orbital hyperspectral imager.



## Prototyping & Evaluating Science Products Level 2-3

**EO-1 Hyperion Science Products & Tools** 1. Reflectance (%) \*\* 2. Vegetation spectral bio-indicators (VIs) \*\* 3. LAI (MODIS C4, SPOT/Veg, AVHRR, MERIS, other) \* 4. fPAR (MODIS, AVHRR, other) \* 5. Total chlorophyll (modeled Cab) \*\* 6. Albedo (MOD43) \* 7. LUE \*\* 8. Landsat - greenness, wetness \* 9. Canopy chemistry (WGCV/LPV!)\*\*



## **Products**

## Approach

## Outcome

Reflectance

ACORN, ATREM and FLAASH ? Spectral matching

LAI, fAPAR, fCover

Foliar pigments (total chlorophyll)

LUE

Spectral approaches, Modeling, In collaboration with OLIVE (WGCV/LPV, F. Baret)

Testing spectral approaches and models, OLIVE

**Spectral and Modeling approaches** 

Seasonal and long term trends in spectra, basis for sensors intercomparison

Seasonal trends, variation by land cover, Validate/Confirm by comparison to field data and estimates from other sensors

Local variability, Seasonal and long term trends

Seasonal dynamics, Variation by cover type

Adjusted to 10 nm spectral trends, classifiers, un-mixing, derivatives; Approaches for confirmation / validation

Monitoring of seasonal and long term trends in foliar water, pigments and other, Monitoring of ecosystem function

### Seasonal Dynamics at 30 m for Major Land Cover Types Greenbelt, MD



Subset of the mid summer radiance image, used in the aggregations to a larger pixel size (from 30 to 60, 90 and 240 m).

### Seasonal Dynamics in VIs for Major Land Cover Types Greenbelt, MD

|            | S Sulfar Ter   | PAGE 1 | 1     | A month and the |      |      |        |
|------------|----------------|--------|-------|-----------------|------|------|--------|
| Cover Type | Hyperion, 2008 | V1     | PRI   | REIP            | Dmax | WBI  | Albedo |
| Corn       | 13-Jun         | 1.03   | -0.04 | 712             | 0.36 | 0.96 | 0.461  |
|            | 18-Aug         | 1.81   | -0.06 | 722             | 0.75 | 1.09 | 0.197  |
|            | 3-Oct          | 1.15   | 0.04  | 721             | 0.51 | 0.98 | 0.155  |
| Forest     | 13-Jun         | 1.12   | -0.06 | 712             | 0.89 | 1.00 | 0.257  |
|            | 18-Aug         | 1.56   | -0.03 | 722             | 0.51 | 1.01 | 0.140  |
|            | 3-Oct          | 1.61   | -0.10 | 712             | 0.42 | 0.94 | 0.127  |
| Water      | 13-Jun         | 0.15   | 0.01  | 712             | 0.16 | 1.23 | 0.058  |
|            | 18-Aug         | 0.52   | 0.02  | 712             | 0.10 | 1.46 | 0.031  |
|            | 3-Oct          | 0.62   | -0.07 | 712             | 0.08 | 0.93 | 0.036  |
|            |                |        |       |                 |      |      |        |

### Reflectance Characteristics of Major Cover Types at 30 and 60 m pixel size

2425

2425





\* different letters indicate statistically significant differences



EO-1 Hyperion image acquired in August 18, 2008 aggregated to 60 & 240 m pixels

The Global Semivariance (describes the <u>spatial autocorrelation</u> within a spectral band) is quite similar for 30 m and 60 m pixels, and significantly different for the 240 m.



Wavelength (band center, nm)

**Harvard Forest** 





FAPAR<sub>chl</sub> image extracted from atmospherically corrected EO-1 Hyperion data for the Harvard Forest area on DOY 159, 2008 (water bodies are set to be 0)



**FAPAR<sub>chl</sub>** 

EVI

## **EO-1 support of HyspIRI**

#### Sun glint off coast of Belize and BRDF effects



## **Color composites using Hyperion VIs**

## Beltsville area in 2008

- Exploring the potential of using Hyperion VIs for terrestrial ecology studies
- R: PRI ; G: NDVI ; B: NDII
- Non-vegetated area showed steady pattern through the season
  - Implication: steady reflectance values
- Phenological cycle: green-up (April-June) and senescence (August-October) were observed.
- During senescence, NDII (water) dropped faster than NDVI (greenness)
- The table shows VI values (top to bottom: PRI, NDVI, NDII) in the Greenbelt Park area (circle on images)

| Hat Charles Tools Window          | #2 (R:Photochemical Refle      _  | #3 (R:Photochemical Ref )     Sefect to the set of | R: PRI, G: NI                     | DVI, B: NDII                                                                    |
|-----------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------|
| File Overlay Enhance Tools Window | File Overlay Enhance Tools Window | File Overlay Enhance Tools Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pile Overlay Enhance Tools Window | #5 (R:Photichemical Refle • • • • • *         File Overlay Enhance Tools Window |
| April 18                          | June 21                           | July 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | August 18                         | October 3                                                                       |
| -0.002                            | -0.049                            | -0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.010                            | -0.095                                                                          |
| 0.4                               | 0.82                              | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.80                              | .076                                                                            |
| 0.11                              | 0.37                              | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.34                              | 0.21                                                                            |

## Comparisons between in situ and Hyperion observations

## USDA Cornfield in Beltsville, MD in 2008

| In situ   | Hyperion  | VIs  | OOptics | Sim_HYP | HYP   |
|-----------|-----------|------|---------|---------|-------|
| August 10 | August 19 | PRI  | -0.03   | -0.026  | -0.04 |
| August 19 | August 18 | NDVI |         | 0.75    | 0.80  |
| October 2 | October 2 | PRI  | -0.04   | -0.05   | -0.08 |
| October 2 | October 3 | NDVI |         | 0.66    | 0.70  |

OOptics: values derived from Ocean Optics measurements (~1.5 nm FWHM)

Sim\_HYP: values derived from simulated Hyperion bands (~ 10 nm FWHM) using Ocean Optics measurements

HYP: values derived directly from EO-1 Hyperion imagery

## **Automated Tools and Applications**

## HyspIRI simulation using Hyperion data

Goals: To test a) data streaming & b) data compression

- 20 random Hyperion L1R scenes were stitched together to match HyspIRI swath
- At 30m and 60m spatial resolution



### Earth Observing 1 (EO-1) Campaign Manager on-line Tool

| NorthCal Fires    | Northern California Fires                          | fire     | patrice  | Yosemite Telegraph Fire, Basin Complex,<br>Whiskeytown Complex, | 06/29/2008<br>02:13 PM | 06/29/2008<br>09:18 PM | 0.4 | Luic Delete Show |
|-------------------|----------------------------------------------------|----------|----------|-----------------------------------------------------------------|------------------------|------------------------|-----|------------------|
| NSP               | Nationa Signature Program                          | intel    | patrice  | TA-03, TA-02, TA-01                                             | 03/03/2008<br>10:25 AM | 05/16/2008<br>12:42 PM | 0.2 | Edit Delete Show |
| Oceans Innovation | Oceans Innovation Workshop<br>Demo                 | algae    | patrice  | Monterey Bay                                                    | 09/10/2008<br>06:18 PM | 09/16/2008<br>06:38 PM | 1.0 | Edit Delete Show |
| Salt Marshes      | To determine salinity contents of<br>flooded areas | flooding | patrice  | Lancaster, VA                                                   | 07/26/2008<br>02:36 PM | 07/26/2008<br>02:36 PM | -   | Edit Delete Show |
| SoCal Fires       | Southern California Fires                          | fire     | patrice  | ~                                                               | 09/06/2007<br>12:00 AM | 06/28/2008<br>09:23 PM | 0.0 | Edit Delete Show |
| UAV               | NASA Ames Ihkana flight scenario                   | fire     | veri_pat | Flood                                                           | 09/06/2007<br>12:00 AM | 06/04/2008<br>02:00 PM | 0.0 | Edit Delete Show |
| UAV 2             | NASA Ames Ihkana Flight<br>Scenario                | fire     | scott    | UAV 2 Test                                                      | 09/17/2008<br>12:40 AM | 09/17/2008<br>12:40 AM | -   | Edit Delete Show |
| UAV 3             | C                                                  | fire     | UNKNOWN  | California                                                      | 09/18/2008<br>03:53 PM | 09/18/2008<br>03:53 PM | -   | Edit Delete Show |

http://geobpms.geobliki.com/

Search OCreate New

×

×

#### Title Content Geolocation Scenario Feasibilities

#### **Tasking Request:**

Scenario/Campaign Tasking Requests for UAV 3

| Title:            | California                                                                                |                              |                          |                     | V Strain                    |                        | Man Ca       | stallita Llubrid |  |
|-------------------|-------------------------------------------------------------------------------------------|------------------------------|--------------------------|---------------------|-----------------------------|------------------------|--------------|------------------|--|
| Description:      |                                                                                           |                              |                          |                     | 40                          | 11 4 1                 | wap 5a       | atenite Hybrid   |  |
| Category:         |                                                                                           |                              |                          |                     | 1                           | States -               |              |                  |  |
| Latitude:         | 41.3                                                                                      |                              |                          | $\forall s \land i$ |                             | S S ST                 | 1.1          |                  |  |
| Longitude:        | -123.8                                                                                    |                              |                          | E H                 |                             | NA TOTAL               |              |                  |  |
| Country Code:     | US                                                                                        |                              |                          | 出 /                 | A. C.                       | No. 1                  | the second   |                  |  |
| Country<br>Name:  | United States                                                                             |                              |                          |                     |                             | Canad                  | da 👘         |                  |  |
| Zone Number:      | 36                                                                                        |                              |                          | 1                   |                             |                        | Time         | C. C. A.         |  |
| Zone Name:        | Northern California                                                                       |                              |                          |                     |                             | V and                  | 1. CE-       | 18 XC            |  |
| Region<br>Number: | 3                                                                                         |                              |                          | 1                   | North Pacific United States |                        |              |                  |  |
| Region Name:      | Oregon, California and Nevada                                                             |                              |                          | Atta                |                             |                        |              |                  |  |
| Admin Code:       | CA                                                                                        |                              |                          |                     |                             |                        |              |                  |  |
| Admin Name:       | California                                                                                |                              |                          |                     |                             | Méxie                  |              |                  |  |
| Nearby:           | Notchko, Surgone, Shregegon (historical), Met<br>Wright Place, Martins Ferry (historical) | tah, Pekwan (historical), Pe | ecwan, Johnsons, Waseck, |                     |                             |                        | 5            | 17 MA            |  |
| Created At:       | Fri, 19 Sep 2008 02:32:22 -0000                                                           |                              |                          | S                   |                             |                        | -            |                  |  |
| Updated At:       | 2008-09-19                                                                                |                              |                          | POWERED BY          |                             |                        | Col          |                  |  |
|                   | Show Map                                                                                  |                              |                          | Coogle              | Mon data @0000 E            | iurono Toobpologico I  | anna af Llas |                  |  |
| Feasibilities     |                                                                                           |                              |                          | New                 | Map uata @2000 E            | uropa rechnologies - 1 | erms of Use  | Л                |  |
|                   |                                                                                           |                              |                          |                     |                             |                        |              |                  |  |
| Found             |                                                                                           |                              |                          |                     |                             |                        |              |                  |  |
| JSAFRICOM         | USAFRICOM Testing                                                                         | flooding cappelaere          | Zimbabwe                 |                     | 06/19/2008<br>02:58 PM      | 06/19/2008<br>02:58 PM | 7            | Edit Delete Sho  |  |

### **EO-1 L2 Tools and Prototype Reflectance Products**

albedo; fAPAR; LAI; spectrum derivatives; chlorophyll, N, water content ...



**Goals:** To enable the conventional users to apply corrections and develop products and applications

### EO-1 serves as a Pathfinder for SensorWebs and Enabling of Rapid Response Remote Sensing



## SensorWeb High Level Architecture



The SensorWeb architecture was developed on EO-1 as a pathfinder effort to encapsulate sensors and data processing algorithms with Open Geospatial Consortium standardized Web 2.0 Service interfaces. Thus future missions, especially HyspIRI, will be able to significantly lower the cost of interoperating, automating procedures and enable rapid customization of data products.

## Disaster Monitoring/Sensor Webs

#### **Disasters:** ALI Imagery of Australian Flood (March 2009)



March 12, 2009 True-Color Image EO-1 ALI Image

In this true-color image, note how the water color is so muddy that it makes discerning the extent of the flooding difficult



This false-color image combines infrared and visible light, which makes the extent of the flooding far more obvious. Water is dark blue, while plant-covered land is green, and bare earth is rosy tan.



March 25, 2009 False-Color Image EO-1 ALI Flood Product

Two weeks later, the flood waters have receded even more, which the EO-1 Flood Product makes evident.



ALI

10/23/07 EO-1 Hyperion and ALI View Witch Wildfire

Hyperion



AI

#### **Disasters:** EO-1 ALI images of New Orleans after Hurricane Katrina



ALI pan-sharpened images acquired just two days apart, clearly showing the receding flood waters from Hurricane Katrina.

Ungar (2005)

**Disasters:** La Plata, MD Tornado after-effects still visible one year later

EO-1 ALI Pan-sharpened images (Ungar, 2003)

April 24, 2002

May 1, 2002

April 27, 2003



Instrument Characteristics and Data Availability can be found at the following URLs

AVIRIS: <u>http://aviris.jpl.nasa.gov/</u>

MASTER: http://masterweb.jpl.nasa.gov/

Hyperion: <a href="http://eo1.gsfc.nasa.gov/">http://eo1.gsfc.nasa.gov/</a> and <a href="http://eo1.usgs.gov/">http://eo1.usgs.gov/</a>

ASTER: http://asterweb.jpl.nasa.gov/

### **Recent ER-2 flights carrying both AVIRIS and MASTER**

| Flight | Date        | Area                                        | Flight                | Date        | Area                                               |
|--------|-------------|---------------------------------------------|-----------------------|-------------|----------------------------------------------------|
| 01-115 | 10 Aug 2001 | Vancouver Island, Canada/Hoquiam, WA        | 02-914                | 02 Nov 2001 | Big Island/Maui/Molokai, HI                        |
| 01-123 | 01 Aug 2001 | Mono Lake/Lake Tahoe, CA                    | 02-915                | 04 Nov 2001 | Big Island/Oahu/Maui, HI                           |
| 01-124 | 17 Aug 2001 | Death Valley/Mono Lake/Walker Lake, CA & NV | 02-916                | 05 Nov 2001 | Big Island/Oahu, HI                                |
| 01-125 | 18 Aug 2001 | Mono Lake/Fort Irwin/Pinto Basin, CA & NV   | 02-917                | 06 Nov 2001 | Big Island/Oahu, HI                                |
| 02-602 | 02 Oct 2001 | Santa Monica/Santa Barbara, CA              | 02-918                | 07 Nov 2001 | Ferry Honolulu, HI to Dryden, CA                   |
| 02-902 | 14 Oct 2001 | Lake Tahoe/Mono Lake, CA                    | 04-601                | 03 Oct 2003 | Ivanpah, CA & NV                                   |
| 02-903 | 15 Oct 2001 | Ferry to Hawaii from Dryden, CA             | 06-626                | 19 Sep 2006 | Sheely Farm/Mono Lake, CA                          |
| 02-904 | 16 Oct 2001 | Big Island of Hawaii                        | 06-627                | 20 Sep 2006 | Cuprite, NV                                        |
| 02-905 | 19 Oct 2001 | Big Island/Maui/Molokai, HI                 | 06-628                | 22 Sep 2006 | Jasper Ridge/Monterey Bay, CA                      |
| 02-906 | 20 Oct 2001 | Big Island of Hawaii                        | 06-629                | 25 Sep 2006 | Yellowstone National Park, WY, MT, & ID            |
| 02-908 | 24 Oct 2001 | Big Island/Kahoolawe, HI                    | 06 <mark>-630</mark>  | 26 Sep 2006 | Mono Lake/Lake Tahoe, CA                           |
| 02-909 | 25 Oct 2001 | French Frigate Shoals, HI                   | 06- <mark>631</mark>  | 27 Sep 2006 | Tonkin, NV                                         |
| 02-910 | 26 Oct 2001 | Big Island/Maui/Kauai, HI                   | 07- <mark>60</mark> 1 | 02 Oct 2006 | Minnesota/Wisconsin                                |
| 02-911 | 29 Oct 2001 | Big Island/Molokai/Kauai, HI                | 08-627                | 11 Jun 2008 | Jasper Ridge/Moffett/Santa Monica/Big Sur Fire, CA |
| 02-912 | 30 Oct 2001 | Kahoolawe/Big Island, HI                    | 08-629                | 19 Jun 2008 | Coal Oil Point, CA                                 |

NASA/ROSES A.29: HyspIRI preparatory activities using existing imagery

## **EO-1 Data**

- Hyperion and ALI archived and newly acquired data are now provided as L1G at no cost by EROS/USGS
- Hyperion L1R archived data can be obtained by special request through the GSFC MSO
- New data acquisition requests are funneled through EROS/USGS

## **Application Examples**

### **Hyperion Maps Mt. Fitton Geology**

Automatic mineral mapping algorithm creates, in 30 seconds, a quick-look mineral map (left & centre). More precise detail is on right.



(Courtesy of CSIRO Australia)

Wavelength(microns)

### **Hyperion Maps Mt. Fitton Geology**

#### Hyperion-based apparent reflectance compares with library reference spectra (1) (2) (3)





Hyperion surface composition map agrees with known geology of Mt. Fitton in South Australia

- (1) Published Geologic Survey Map
- (2) Hyperion three color image (RGB) showing regions of interest
- (3) Hyperion surface composition map using SWIR spectra above

#### Courtesy of CSIRO, Australia

## Mapping land cover and vegetation diversity in a fragmented ecosystem





Goodenough et al. 2003

#### Detection of Invasive Plants in the Galapagos National Park and Archipelago, Ecuador by merging Hyperion and *QuickBird*



#### Composition of Inland Tropical Amazon Floodplain Waters Using Hyperion Derivative Analysis



#### Detection of mountain pine beetle red attack damage, using Hyperion moisture stress indices (MSI)



Individual tree crowns with mountain pine beetle red attack damage were identified using the Hyperion spectra then overlaid on a QuickBird image and are delineated in red.

## Forest structure, biomass and species richness maps estimated from Hyperion



a) canopy height (m);
b) Shannon species richness;
c) biomass (kg/0.1 ha);
d) basal area (m2/ha)

(Kalacska et al. 2007)

#### **Desertification in Central Argentina**



Asner et al.

#### **Predicted Canopy Nitrogen**





Ollinger et al. (2003)

#### 4-way model validation, Bartlett Experimental Forest



Ollinger et al. (2003)



#### Tropical Forest NPP from Field, Remote Sensing and Modeling Combinations



Asner et al.

## **GSFC HyspIRI Science Support**

• We continue to utilize EO-1 assets to evaluate and plan HyspIRI products and algorithms.

Betsy Middleton Petya Campbell Qingyuan Zhang Yen-Ben Cheng Larry Corp Lawrence Ong Stu Frye Dan Mandl Nathan Pollack

Steve Ungar Kurt Thome Bob Knox Fred Huemmrich

## **Backup Slides**





The Global Semivariance provides a single value that describes the <u>spatial</u> <u>autocorrelation</u> of the data within a spectral band.

The Geary's C index provides a measure of <u>dissimilarity</u> within the data.



EO-1 Hyperion image acquired in August 18, 2008 aggregated to 60 & 240 m pixels

The Global Semivariance (describing the <u>spatial autocorrelation</u> of the data within a spectral band) is quite similar for 30 m and 60 m pixels, and significantly different for the 240 m.



Wavelength (band center, nm)

#### **Developing Higher level EO-1 Hyperion Science Products**

#### Vegetation Indices and Albedo for major Crops and Land Cover Types (example for Greenbelt, MD)

| Pixel                                                                  |      |       | Albedo |       |      |      |       |      |        |
|------------------------------------------------------------------------|------|-------|--------|-------|------|------|-------|------|--------|
| size                                                                   | V1   | PRI   | REIP   | Dmax  | NDWI | NDVI | water | corn | forest |
| 30 m                                                                   | 1.81 | -0.14 | 721    | 0.749 | 0.14 | 0.81 | 0.03  | 0.20 | 0.14   |
| 60 m                                                                   | 1.88 | -0.15 | 721    | 0.748 | 0.15 | 0.82 | 0.04  | 0.20 | 0.13   |
| * Reported means, no statistically significant differences established |      |       |        |       |      |      |       |      |        |

• Enabling conventional users to conduct their own assessments, using software such as ENVI (Agricultural stress and Red edge Greenbelt, MD)



- Dome C 75°S, 123°E, 3250 m
- Very small surface slope results in light winds and small surface roughness
- Cold, fine-grained snow all year
- Similar surface to most of East Antarctic Plateau above 3000 m



#### **CEOS/WGCV/IVOS Sites**

| http://eo1.geobliki.com/ |                                                     |
|--------------------------|-----------------------------------------------------|
| Current Schedule         |                                                     |
| NASA EO-1                |                                                     |
| 📃 🖸 My Tasks             |                                                     |
| 🖸 🖬 Tasks                |                                                     |
| GeoTools                 | http://aether.geobliki.com/                         |
| Atmospheric Correction   | Atmospheric Correction Server                       |
| 🗖 Tags                   |                                                     |
|                          | Plane altitude above sea level (km) 700             |
|                          | Date/Time (MM DD YYYY hh mm ss) 07 13 2008 15 32 48 |
|                          | Latitude (degrees minutes seconds) 39 14 37         |
|                          | Earth hemisphere (N or S)                           |
|                          | Longitude (degrees minutes seconds) 1/6 55 00       |