

A PERSONAL PROPERTY AND A PERSON AND A PERSO

HyspIRI TQ3: Water Use and Availability

M.C. Anderson USDA-ARS, Hydrology and Remote Sensing Laboratory

R.G. Allen University of Idaho - Kimberly

Earth <u>IS</u> the Water Planet

Quantifying and Managing Water Consumption is Crucial

TQ3: Water Use and Availability

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

Can we increase food production in water-scarce agricultural regions while improving or sustaining environmental access to water?

1 July 2002 - 10:30AM CST

Impact of Irrigation on Water Consumption

Variation among Fields of the Same Crop

weekly revisit will improve seasonal integration

Variation among Populations of Wild Vegetation

15,000 acres of cottonwood and salt cedar

TQ3: Water Use and Availability

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

• Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

Can we increase food production in water-scarce agricultural regions while improving or sustaining environmental access to water?

EVAPORATIVE STRESS INDEX

TQ3: Water Use and Availability

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

• Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

Can we increase food production in water-scarce agricultural regions while improving or sustaining environmental access to water?

Water Consumption and Biomass from Satellite

Why Energy balance?

ET is calculated as a "residual" of the energy balance
 Rn (radiation from sun and sky)

(heat to air)

Basic Truth: Evaporation consumes Energy $ET = R_n - G - H$

(heat to ground)

The energy balance includes all major sources (R_n) and consumers (ET, G, H) of energy

Why Land Surface Temperature?

Courtesy of W. Bastiaanssen, WaterWatcl

ET is not just about Vegetation Amount

April 4, 2002 Landsat 7

Rio Grande, New Mexico

ET is not just about Surface Temperature (but almost)

April 4, 2002 Landsat 7

Rio Grande, New Mexico

ET vs. NDVI

June 7, 2002 Landsat 7

Rio Grande, New Mexico

Dry soil surface

1.20 1.00 0.80 ETrF - Fraction of Reference ET 0.60 Desert. NW 0.40 Desert. West ▲ ■ Desert. ∩ MRG ○ Ag. North 0.20 0.00 ⁷Ô.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -0.20 NDVI - Vegetation Index

ET vs. LST

June 7, 2002 Landsat 7

Rio Grande, New Mexico

<u>Dry soil</u> <u>surface</u>

Sensible Heat Flux -- Parameterization

 $H = \rho c_p T_* u_*$

 $\begin{array}{ll} \Delta T & = \\ u_{z3} & = \\ \psi & = \end{array}$

near surface temperature gradient general wind speed at blending height boundary layer stability functions

Science Traceability Matrix

How is climate variability impacting the evaporative component of the global water cycle over natural and managed landscapes? (DS 166, 196, 203, 257, 368; WGA)
Evapotranspiration (surface energy balance) at scales resolving the typical length scales of land-surface moisture Heterogeneity
Global coverage; ~weekly revisit; resolving agricultural fields, riparian patches, reservoirs, water rights (tied to agricultural field-sized) polygons; LST accurate to 1 K; ~10-11 A.M. Overpass
<100-m resolution; 3+ bands in the 8–12 micron region (for atmospheric and emissivity correction); Min/Max T 250/360 K; ~weekly revisit; Maximum view angle 20–30 deg from nadir
Detailed land cover classification (can be improved using hyperspectral); vegetation indices; Coincident broadband albedo retrievals ; regional hydrologic water balances and stores

Validation Approaches

- ET from ground-based flux networks

 Ameriflux / FLUXNET
 - NEON Long-term Ecological Research sites
 - NSF CUAHSI Hydrologic Study Watersheds
 - EOS validation sites
- Intensive Soil-Plant-Atmospheric modeling
- Other ET products (intensive, local scale remote sensing, etc.)

Level 3 Products

•High Resolution, Near Real Time Maps of Global Evapotranspiration and partitioning of H and LE

 High Resolution, Annual Maps of Global Evapotranspiration

Global Maps of Irrigated Acreage
Global Maps of Water Productivity

(Crop per Drop)

Level 3 Product: Global Evapotranspiration

Pre-assign Calibration – Sampling areas each ~100 km

Use for automated calibration

Augusta Savannah River, S.Carolina and Georgia --Candidate areas for calibration of the Energy Balance

Calibration using Inverse Modeling of Extreme Conditions – CIMEC -- used by SEBAL, METRIC, SEBI

- Question: Are there 'conditions' in the image where we 'know' at least three components of the EB? (R_n, G, H, LE)
- Answer: Yes.
 - at a 'dry' condition:

• LE ~ 0 so that $H = R_n - G$

- At a 'wet' (vegetated condition):
 - For full cover, ET → ET_{ref} so that H = R_n G c ET_{ref} (METRIC - at a specific location; SEBI - for each pixel, theoretical condition)

Challenge with Near Surface Temperature Difference (dT)

- T_{air} is <u>unknown</u> and <u>spatially</u> <u>variable</u> at the 60 m scale
- A linear relationship between T_s and dT generally holds:

 $dT = b + aT_s$

T_s is <u>used only as an index</u> and <u>can have large bias</u>

Selection of Two Endpoint Temperatures for CIMEC Calibration

June 7, 2002 Landsat 7

CIMEC autocalibration minimizes biases in EB Components

Selection of Two Endpoint Temperatures for CIMEC Calibration

April 4, 2002 Landsat 7

Calibration of SEBAL and METRIC CIMEC models:

Inversion of the H eqn:

$$dT_{cold} = \frac{H_{cold} r_{ah cold}}{\rho_{air cold} c_{p}}$$

$$dT_{hot} = \frac{H_{hot} r_{ah hot}}{\rho_{air hot} c_p}$$

 $R_n - G - 1.05 ET_{ref alfalfa} (METRIC)$ or 0 (SEBAL – classical)

Utility of Global ET Product

- Accuracy will be adequate for direct use by:
 - hydrology water balance models
 - estimation of irrigation performance
 - estimation of water stress and food production during drought
- Relative spatial accuracy will be even better

Interpolation between images for Seasonal ET

Interpolate fraction of reference ET between satellite imaging dates

Precursor Science

- Improve autocalibration of ET algorithms to compensate for energy balance component biases
- Develop means to best combine higher frequency TIRS (for H) with lower frequency VSWIR (for albedo, roughness)
- Adjustment of LST retrievals for tall vegetation canopies as f(view angle)m – leverage MODIS, airborne, etc.

Precursor Science

- Assimulate NCEP, GDAS etc. weather and rainfall grids with daily soil-water balance modeling to interpolate between overpass dates and as means to estimate potential (reference) ET
- Explore combinations of hyperspectral VSWIR and TIR to increase accuracy of mapping of irrigated agriculture