

A PERSONAL PROPERTY AND A PERSON AND A PERSO

HyspIRI TQ3: Water Use and Availability

M.C. Anderson USDA-ARS, Hydrology and Remote Sensing Laboratory

R.G. Allen University of Idaho - Kimberly

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

Remote Sensing of Surface Moisture

• Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

SAN PEDRO RIVER, ARIZONA

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

• Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

EVAPORATIVE STRESS INDEX

⁽Anderson et al., 2007)

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

• Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

Current maps are based on radiation, precipitation, landcover class, and shortwave reflectances

2006 Annual Water Balance (PPT - ETa) (mm) Columbia Plateau: NOAA/NEXRAD Precip minus SSEB ETa)

⁽G. Senay; EROS)

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

• Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

Irrigation district in Lebrija, Spain

Response to climate change:

How is climate change impacting the evaporative component of the global water cycle over natural and managed landscapes?

Water management:

How can information about evapotranspiration and its relationship to landuse/landcover be used to facilitate better water management?

• Drought:

How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• Irrigated area:

What is the current global irrigated acreage, how is it changing with time, and are these changes in a sustainable balance with regional water availability?

• Water use in food production:

Seasonal ET

• weekly revisit will improve seasonal integration

Seasonal ET

Satellite Thermal Imaging Systems

Pixel Scale	Spatial Resolution	Temporal Resolution	<i>Current</i> <i>Sources</i>	Future Sources
Coarse	5-20 km	15 min	AIRS <i>GOES</i> MSG	CrIS GOES MSG
Moderate	1 km	2-4 times daily	<i>MODIS</i> AVHRR ATSR	VIIRS AVHRR ATSR
Fine	90–120 m	Once every 8- 16 days	ASTER <i>Landsat</i>	

Table from S. Hook