

HyspIRI Science Workshop Background and Overview

Woody Turner & John LaBrecque HyspIRI Program Scientists Earth Science Division NASA Headquarters

October 21, 2008

Background

- January 2007: NRC releases Earth Science & Applications from Space report (the Decadal Survey) to NASA, NOAA, & USGS
- Calls for 17 satellite missions as an integrated set of space measurements in the decade 2010-2020 (14 NASA, 2 NOAA, 1 both)
- NRC places missions in 3 temporal tiers (2010-2013, 2013-2016, 2016-2020)
- Tier 2 contains a Hyperspectral Infrared Imager or HyspIRI mission: hyperspectral imager in visible to SWIR & thermal multispectral scanner
- Targets:
 - Global ecosystem (terrestrial & aquatic) condition & change
 - Global surface temperature & emissivity measures for hazards, water use & availability, urbanization, & land surface composition & change
- Decadal Survey recommendations set boundary conditions for mission design efforts & discussions at this workshop
 - We rarely stray from them & only do so for the most compelling reasons of science, cost, mission design, etc.

HyspIRI Steering Committee

- NASA HQ
 - Woody Turner, John LaBrecque co-Program Scientists
 - Steve Neeck Program Executive
 - Martha Maiden Data
 - Diane Wickland Terrestrial Ecology
 - Paula Bontempi/Fred Lipschultz Ocean Biology
 - Bob Smith, Amy Walton ESTO
 - John Haynes Applied Sciences
 - Craig Dobson Ecosystem Structure
- JPL
 - Rob Green VSWIR Science Lead
 - Simon Hook TIR Science Lead
 - Francois Rogez Mission Design
- GSFC
 - Betsy Middleton GSFC Science Lead
 - Steve Ungar Science & Mission Design
 - Bob Knox Science & Mission Design
 - Jon Ranson Science Management
- ARC
 - Matt Fladeland Aircraft

- Rob Green/Simon Hook JPL co-leads
- Mike Abrams JPL
- Rick Allen UID
- Martha Anderson USDA
- Greg Asner Carnegie
- Bryan Bailey/Dave Meyer USGS
- Paul Bissett FERI
- Alex Chekalyuk Lamont-Doherty
- James Crowley USGS
- Ivan Csiszar NOAA
- Heidi Dierssen UConn
- Friedman Freund ARC
- John Gamon Alberta
- Louis Giglio GSFC
- Greg Glass JHU
- Jim Irons GSFC

- Bob Knox GSFC
- Lyle Mars USGS
- Betsy Middleton GSFC
- Peter Minnett U Miami
- Frank Muller-Karger UMass
- Scott Ollinger UNH
- Anupma Prakash UAF
- Dale Quattrochi MSFC
- Vince Realmuto JPL
- Dar Roberts UCSB
- Dave Siegel UCSB
- Phil Townsend UWI
- Kevin Turpie GSFC
- Steve Ungar GSFC
- Susan Ustin UC Davis
- Rob Wright UHI

SSG Products

- Draft the scientific rationale for the HyspIRI mission
- Help design first HyspIRI Science Workshop
- Develop Overarching Science Questions & Subquestions for hyperspectral VSWIR sensor, multispectral TIR sensor, & combined VSWIR/TIR
- Questions both aquatic & terrestrial
- Draft white paper making the case for the mission around the Science Questions
- Assemble Science Traceability Matrices for each subquestion linking:

Science Questions → Measurement Objectives → Measurement Requirements → Instrument Requirements → Other Mission & Measurement Requirements

• This is how we deliberately go from science to mission requirements

Overarching Question Topics

- VQ1 Pattern in Spatial Distribution of Ecosystems
- VQ2 Ecosystem Function, Physiology & Seasonal Activity
- VQ3 Biogeochemical Cycles
- VQ4 Ecosystem Response to Disturbance
- VQ5 Ecosystems & Human Wellbeing
- VQ6 Earth Surface & Shallow Water Composition
- TQ1 Volcanoes & Earthquakes
- TQ2 Wildfires
- TQ3 Water Use & Availability
- TQ4 Human Health & Urbanization
- TQ5 Earth Surface Composition & Change

- CQ1 Coastal, Ocean, & Inland Aquatic Environments
- CQ2 Wildfires
- CQ3 Volcanoes
- CQ4 Ecosystem Function & Diversity
- CQ5 Land Surface Composition & Change
- CQ6 Human Health & Urbanization

Workshop Overview

- Guidance
 - This is a "working" workshop with interactive breakout sessions & key points captured by rapporteurs.
 - This is a Science workshop.
 - Our Science is the science called for in the NRC Decadal Survey.
- Objectives
 - Review with the broader community the work of the 2007 hyperspectral & thermal mission concept teams & the 2008 HyspIRI Science Study Group
 - Review the Science Questions
 - Review the Whitepaper
 - Review the Science Traceability Matrices for VQ's & TQ's (CQ Leads will seek to ensure CQ requirements captured by VQ & TQ STMs)
- Ultimate Products
 - Final HyspIRI White Paper with improved science questions
 - Updated HyspIRI Science Traceability Matrices
- Together: Whitepaper & Traceability Matrices provide scientific rationale for the HyspIRI Mission & set the stage for mission design & tradeoffs

Workshop Agenda - Day 1

- AM
 - Mission Overviews & Presentations of VSWIR Questions
 - Question Presentations by SSG members
- PM
 - VSWIR Breakout Sessions
 - Two 1.25 hour sessions separated by a break so we will address each of the 6 questions twice, allowing individuals to take in two sessions & provide more cross discipline interaction
 - Led by SSG members
 - Review Science Questions
 - Review Whitepaper content
 - Review STMs
 - Break to allow breakout leads & rapporteurs to prepare for Plenary
 - Plenary
 - Report on each question breakout—key issues raised, revisions to STMs & whitepaper content

Workshop Agenda - Day 2

- AM
 - Discussion of potential HsypIRI airborne campaign(s)
 - Ideas for campaign research topics
 - Presentations of TIR Questions
 - TIR Breakout Section 1
 - First of two 1.25 hour sessions separated by lunch addressing each of the 5 questions twice, allowing individuals to take in two sessions & provide more cross discipline interaction
 - Led by SSG members
 - Review Science Questions
 - Review Whitepaper content
 - Review STMs

• PM

- Second TIR breakout session
- Break to allow breakout leads & rapporteurs to prepare for Plenary
- Plenary reports from breakouts
- Special session on advanced technologies for HyspIRI mission
 - ESTO & GSFC presentations
 - · Interested in ideas from the community

Workshop Agenda – Day 3

• AM

- Presentations of Combined Questions
- First of two 1.25 hour sessions separated by lunch addressing each of the 6 questions twice
 - Led by SSG members
 - Review Science Questions
 - Review Whitepaper content
 - Review STMs

• PM

- Second combined breakout session
- Break to allow breakout leads & rapporteurs to prepare for Plenary
- Plenary reports from breakouts
- Discussion & review of VSWIR & TIR measurement baselines vis-à-vis science questions
- Discussion of potential international & domestic partnerships
- Workshop review & next steps

Sample Science Traceability Matrix

Science Objectives	Measurement Objectives	Measurement Requirements	Instrument Requirements	Other Mission and Measurement Requirements
TQ1 Volcanoes and Earthquakes: How can we help predict and mitigate earthquake and volcanic hazards through detection of transient thermal phenomena?				
Do volcanoes signal impending eruptions through changes in surface temperature or gas emission rates and are such changes unique to specific types of eruptions? [DS 227]	Detect, quantify and monitor subtle variations in: 1) surface temperatures 2) sulfur dioxide emissions at low, non-eruptive flux levels. Compilation of long- term baseline data sets.	Temperature measurements in the range -20 to 100 °C. TIR radiance measurements at ~8 μm; 5 other TIR bands for use in SO2 retrieval algorithm; 7 day repeat.	7 TIR channels, 7-12 μm Pixel size ≤60 m NEΔT ~0.02 K. >95% abs. radiometric calibration	Nighttime data acquisitions.
What do changes in the rate of lava effusion tell us about the maximum lengths that lava flows can attain, and the likely duration of lava flow- forming eruptions? [DS 226]	Area covered by active lava flows; Lava flow surface temperatures; Radiant flux from lava flow surfaces.	Temperature measurements in the range 0 to 1200 °C (active lava), and 0-50 °C (ambient background). 5 day repeat.	1 low gain channel at ~4 μm (NEΔT ~ 1-2 K) 2 nominal gain channels at 10-12 μm Pixel size ≤90 m Rapid bright target recovery at 4 μm (<2 pixels), bands saturate at 1200C	Nighttime data acquisitions. NIR/SWIR hyperspectral data is beneficial. Rapid response off nadir pointing capability. Rapid re-tasking for acquisition of targets of opportunity.

REQUIREME IS CREEP

Going Forward in 2009

- Early: With your help, HyspIRI SSG & Steering Committee will improve & complete whitepaper/STMs to demonstrate the compelling scientific case for the HyspIRI mission
 - This is your chance to strengthen the rationale for this mission through its potential scientific return
- Early: Potential ROSES call for HyspIRI precursor airborne science
- Throughout: Plan for HyspIRI Science Team
- Throughout: Continue refinement of the mission design, schedule, & cost using the Science Traceability Matrices to define requirements & explore mission-related tradeoffs
- Throughout: Initiate additional studies, as necessary, to support mission
- Late Summer: 2nd HyspIRI Science Workshop focusing on reports from relevant scientific investigations
 - We are building a cross-discipline, integrated research community
 - Big question science for/from a mission with multiple capabilities
- Late: HyspIRI ready for Mission Concept Review & transition to Phase A status