

HyspIRI

VSWIR Calibration and Validation

NASA Earth Science and Applications Decadal Survey

Robert Green and HyspIRI Team

Calibration and the Signal

HyspIRI VSWIR Imaging Spectrometer Measurement Characteristics

HyspIRI VSWIR Key Science Measurements

HyspIRI VSWIR Science Measurement Characteristics

Spectral

Range

Sampling

Response

Accuracy

Radiometric

Range & Sampling Accuracy Precision (SNR) Linearity Polarization Scattered Light

Spatial

Range Cross-Track Samples Sampling Response

Uniformity

Spectral Cross-Track Spectral-IFOV-Variation 380 to 2500 nm in the solar reflected spectrum <= 10 nm {uniform over range} <= 1.2 X sampling (FWHM) {uniform over range} <0.5 nm

0 to 1.5 X max benchmark radiance, 14 bits measured >95% absolute radiometric, 98% on-orbit reflectance, 99.5% stability See spectral plots at benchmark radiances >99% characterized to 0.1 % <2% sensitivity, characterized to 0.5 % <1:200 characterized to 0.1%

>150 km >2500 <=60 m <=1.2 X sampling (FWHM)

>95% cross-track uniformity {<0.5 nm min-max over swath}</p>
>95% spectral IFOV uniformity {<5% variation over spectral range}</p>

HyspIRI VSWIR Science Measurements Key SNR and Uniformity Requirements

Benchmark Radiances Required SNR 30 - SNR 0.01 Reflectance (z45) 60m 1000 -0.01 reflectance (z45) 25 Radiance (uW/cm^2//nmsr) - SNR 0.05 Reflectance (z45) 60m Signal-to-Noise Ratio 800 -0.05 reflectance (z45) - SNR 0.25 Reflectance (z23.5) 60m 20 SNR 0.50 Reflectance (z23.5) 60m -0.25 reflectance (z23.5) 600 15 -0.50 reflectance (z23.5) 400 10 200 5 0 350 950 2150 350 650 950 1250 1550 1850 2150 2450 650 1250 1550 1850 2450 Wavelength (nm) Wavelength (nm)

Uniformity Requirement

Cross Track Sample

Depiction

- -Grids are the detectors
- -dots are the IFOV centers
- -Colors are the wavelengths

Requirement

Spectral Cross-Track

Spectral-IFOV-Variation

>95% cross-track uniformity {<0.5 nm min-max over swath}

>95% spectral IFOV uniformity {<5% variation over spectral range}

Laboratory Calibration

- Imaging Spectrometers have unique spectral, radiometric, and spatial characteristics
- Each calibration characteristic has response, range, and corresponding uncertainty factors
- With 100s of spectral channels and 100,000s of detector elements, imaging spectrometers present special challenges for calibration
 - HyspIRI 532,500 detector elements

Spectral Calibration

- Standards
 - Emission lamps, lasers and rare-earth target
- Approach
 - Collimator fed by scanned monochromator
 - Laser fed integrating sphere
 - Illuminated neodymium panel
- Calibration Analysis Output
 - 2D spectral calibration
 file with uncertainties
 for Global and Target modes
- Example
 - AVIRIS Spectral Response Functions

(from ~2001)

Spectral Fit for Determination of Best Gaussian Function

2010 Spectral Response Function Measurements

5.0×10[#]

1.0=104

1.5×10⁸

frame

2.0×10*

2.5=10*

Spectral Equipment

Illuminated Nd Panel

Laser-fed Integrating Sphere

407 nm 532 nm 632 nm 780 nm 830 nm 1064 nm 1a550 nm 2050 nm

Sphere In Use

Custom Scanning Monochromator with Collimator

Radiometric Calibration

- Standards
 - NIST traced lamp panel 400 to 2500 nm
 - Blackbody (BB) 1500 to 3000 nm
 - Stable integrating sphere
- Approach
 - Direct view of NIST lamp panel, integrating sphere, and BB
- Calibration Analysis Output
 - 2D radiometric calibration coefficients and uncertainties
- Example
 - Airborne-IS :

321000 radiometric — calibration coefficients and uncertainty

Radiometric Equipment

NIST Traced Lamp-Panel 400 to 2500 nm

White-light Integrating Sphere for Vignetting and Flat Field

NIST Traced Lamp-Panel used for CRISM Check

Extended Area Blackbody 1500 to 3000 nm

Spatial Calibration

- Standards
 - White light illuminated slit
- Approach
 - Collimator fed by scanned white light slit
- Calibration Analysis Output
 - 2D spatial response functions and uncertainties
- Example
 - Airborne-IS spatial response functions

Geometric Calibration

- Standards
 - Spatial targets plus validated optical design
- Approach
 - Use optical design plus selected lab collimator fed spatial targets
 - Theodolite measurements of telescope projected slit
- Calibration Analysis Output
 - Camera model cosines
- Example
 - Airborne-IS georectification

HyspIRI Uniformity Calibration

- Standards
 - Laser-fed integrating sphere
 - Neodymium panel
 - Scanning monochromator
 - Scanning white light slit
- Approach
 - Use optical design plus selected collimator-fed spatial targets
 - Use Laser-fed integrating sphere to cover FOV
- Calibration Analysis Output
 - Spectral cross-track uniformity
 - Spectral IFOV uniformity
- Example
 - M3 cross-track uniformity *

HyspIRI Example from Airborne-IS 2005

- Airborne-IS example from Ivanpah Playa
- Solar reflected spectrum
- Offner spectrometer
- TCM6604a detector array
- HyspIRI calibration standards and approach

Level 1

A2 Band 206:m05051911602_cal Cal Fie Overlay Enhance Tools Window

DN versus Band

Radiance versus Wavelength

HyspIRI VSWIR Science Measurements On-Orbit Calibration Baseline

On-Orbit Calibration

Lunar View Solar Cover Views Dark signal measurements Surface Cal Experiments

- 1 per month {radiometric}
- 1 per day {radiometric}
- 1 per orbit and edge detector tracking
- >3 per year {spectral & radiometric}

Inflight Calibration Validation Experiment

AVIRIS Calibration Experiment 060506

Level 2 Reflectance Validation

Candidate Dark Target Validation Site

International Interaction for Calibration and Validation

- Australia
 - Calibration Validation, Carbon, Coastal Ocean GBR
 - Data Processing
- Canada
 - Product validation, Forestry,
 - Data Processing
- Israel
 - Calibration Validation
- Europe
 - EnMap, PRISMA, Product validation
 - Data Processing
- Brazil
 - Product validation
- Argentina
 - Calibration Validation, Product validation
- India
 - Agriculture, Himalaya, Product validation

HyspIRI Calibration Summary

- The HsypIRI calibration requirements are well understood.
- The imaging spectrometer calibration history for HyspIRI is strong.
 AVIRIS, WarFighter, Hyperion, CRISM, Airborne-IS, M3, etc.
- Detail ground calibration procedures and practices are in understood
- The HyspIRI VSWIR instrument includes a solar calibration panel (Hyperion derivative), Monthly lunar views, and ground calibration validation.
- On-Orbit Calibration experiments are core to the baseline mission
- Level 2 product validation will be performed for a range of surface types from bright to dark.
- Extensive international collaboration is planned for calibration and validation of level 1 and level 2 products