Land Surface Classification Opportunities

Craig Daughtry, Martha Anderson, Bill Kustas, Paul Doraiswamy, Ray Hunt USDA-ARS Hydrology and Remote Sensing Lab, Beltsville, MD Jerry Hatfield USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA Melba Crawford Agronomy Dept., Purdue University, West Lafayette, IN

Introduction

- Reliable estimates of surface heat fluxes require accurate classification of land surfaces.
- In agricultural regions, land surfaces are dynamic.
 - Bare soil, Green vegetation, Senesced vegetation
 - All classes present, but proportions change with time and space.
- HyspIRI will provide opportunities to improve surface classification by simultaneously acquiring VSWIR and thermal IR.

What is crop residue? The portion of a crop that is left in the field after harvest.

Crop residues on the soil surface:
 Decrease soil erosion
 Increase soil organic matter
 Alter surface energy balance

 Albedo and emissivity

Soil tillage and biomass harvesting
 Reduce residue cover

Current Methods of Measuring Crop Residue Cover

Line Point Transect

- Stretch Line-Point Transect across rows and count the number of markers that intersect residue.
- Accuracy depends on length of line, number of points, and size of residue pieces.

Windshield Survey

- Trained observers stop at intervals along a fixed route and assess fields on both sides of road.
- Errors due to subjective interpretation and limited observation of field conditions near the road.

Traditional methods of measuring crop residue cover are inadequate for many fields and large areas.

Cellulose Absorption Index (CAI) is a measure of the relative depth of the absorption feature near 2100 nm. Other features are associated with protein, lignin, and minerals.

Basic Research: Lab & Field Reflectance Spectra

Cellulose Absorption Index

- CAI = 100 [0.5 (R₂₀₃₀ + R₂₂₁₀) R₂₁₀₀]
- CAI measures the relative intensity of the absorption feature at 2100 nm.
- Crop residue cover is linearly related to CAI, but water in the scene attenuates the reflectance signal and changes the slope of relationship.
- > A ratio index measured relative scene moisture and improved estimates of crop residue cover.

Scaling-up: Airborne & Satellite Imaging Spectrometer Data

93% planted; 39% emerged

Soybeans:

54% planted; 4% emerged

Hyperion Imagery was acquired: May 3

Residue Cover Category

Tillage Class =	Intensive	Reduced	Conservation	
	<15%	15-30%	>30%	Area
2003 Crop	%	%	%	ha
Corn	18	36	46	27,286
Soybean	35	40	25	20,832
Overall	25	38	37	48,118

May 3, 2004

Crop residue cover classes derived from Hyperion data using CAI, were combined with the Cropland Data Layer product from NASS.

	<15%	15-30%	>30%	Area
2004 Crop	%	%	%	ha
Corn	7	38	55	35,034
Soybean	3	21	76	25,261
Overall	5	31	64	60,295

Weather at planting influences tillage intensity.
 2004: warm, dry = more intense tillage
 2005: cool, wet = less intense tillage

May 22, 2005

- Previous crop and its biomass (yield) determine the potential (maximum) crop residue cover.
 Tillage practices (intensity)
 - and/or biomass harvesting determine the actual crop residue cover.

The Environmental Policy Integrated Climate (EPIC) model was used to predict the long-term impacts of management practices on crop yields and soil organic carbon (SOC) across the US Corn Belt.

http://www.public.iastate.edu/~tdc/i_epic_main.html

Preparation of the Database

Paul C. Doraiswamy, USDA-ARS HRSL, Beltsville, MD

Simulated Changes in Soil Organic C (1980-2019)

• Climate, physiography, soil, and tillage practices affects the magnitude of change in SOC.

Simulated Changes in Soil Organic C (1980-2019)

Major Land Resource	Tillage System			
Area	Conventional	Reduced	No Till	
	Simulated SOC Changes (Mg ha-1)			
103 Central Iowa and Minnesota Till Prairies	-7.35	-0.79	14.79	
104 Eastern Iowa and Minnesota Till Prairies	-8.48	-2.42	11.66	
105 Northern Mississippi Valley Loess Hills	-8.49	0.08	14.33	
107 lowa and Missouri Deep Loess Hills	-4.67	3.52	18.35	
108 Illinois and Iowa Deep Loess and Drift	-5.74	1.06	15.88	
109 Iowa and Missouri Heavy Till Plain	-6.37	0.02	14.37	

Causarano, H.J., P.C. Doraiswamy, G.W. McCarty, J.L. Hatfield, S. Milak, and A.J. Stern. 2008. EPIC modeling of soil organic carbon sequestration in croplands of Iowa. J. Environmental Quality, 37: 1345-1353.

Temporal Changes in Soil Organic C Stocks

Simulations conducted at 2.56 km² resolution in the crop areas for a 50-year period. Model was initiated in 1970 when the NRCS STATSGO data were developed.

Causarano, H.J., P.C. Doraiswamy, G.W. McCarty, J.L. Hatfield, S. Milak, and A.J. Stern. 2008. EPIC modeling of soil organic carbon sequestration in croplands of Iowa. J. Environmental Quality, 37: 1345-1353.

Conclusions

Relationships developed with ground-based spectroradiometers (ASD) are extendable to airborne (AISA & AVIRIS) and spaceborne (Hyperion & ASTER) sensors.

> Maps and inventories of crop residue cover and soil tillage practices across agricultural landscapes are possible.

>Estimates of surface energy balance can be improved by better characterization of the surface.