Techniques for remote estimation of pigment contents and composition in terrestrial vegetation

Anatoly Gitelson University of Nebraska-Lincoln agitelson2@unl.edu

Products: Contents and composition of pigments in terrestrial vegetation

- Total chlorophyll content
- Total carotenoids content
- Anthocyanin content

Justification

Pigments relate to both the physiological status and the photosynthetic capacity of vegetation

 Chlorophylls <u>absorb</u> solar radiation and provide mechanisms for its <u>utilization</u> in photosynthetic reactions.

Justification

Pigments relate to both the physiological status and the photosynthetic capacity of vegetation

- <u>Chlorophylls</u> absorb solar radiation and provide mechanisms for its utilization in photosynthetic reactions.
- Carotenoids contribute to <u>light-harvesting</u> and also play a <u>photo-protective role</u>, preventing damage to the photosynthetic apparatus in leaves.

Justification

Pigments relate to both the physiological status and the photosynthetic capacity of vegetation

- Chlorophylls absorb solar radiation and provide mechanisms for its utilization in photosynthetic reactions.
- Carotenoids contribute to light-harvesting and also play a photo-protective role, preventing damage to the photosynthetic apparatus in leaves.
- The induction of anthocyanins biosynthesis occurs as a result of <u>deficiencies</u> in nitrogen and phosphorus, wounding, pathogen infection, desiccation, low temperature, UV-irradiation etc. Anthocyanins fulfil important physiological functions by being involved in the <u>adaptation to numerous stresses</u> and environmental strain reduction.

Basis for the product:

 $\rho^{-1}(\lambda) \propto [a_{pigm}]$

Three-band model for pigment content estimation

Kubelka-Munk remission function

$$f(\rho_{\infty}) = (1 - \rho_{\infty}^{2})/2\rho_{\infty} \cong \rho_{o}^{-1}$$

 $+b_{\mu}$

Thus, ρ^{-1} relates to inherent optical properties of vegetation, *a* and *b*_b, at canopy level:

Pigment $\propto [\rho^{-1}(\lambda_1) - \rho^{-1}(\lambda_2)] \times \rho(\lambda_3)$

How does it work?

$CI_{red edge} \propto [(\rho_{red edge})^{-1} - (\rho_{NIR})^{-1}] \times \rho_{NIR}$

Why and how is HyspIRI able to uniquely provide it? Is the model species-specific? Chlorophyll content and green LAI were the same in both maize and soybean Soybean sites **AISA-Eagle Hyperspectral Imager** 3.09 Maize Maize Soybean Green 2.06 Model Red edge Model .03 **Red-edge Model Green Model**

Narrow band red edge model is not species specific

Relevance to climate

GPP vs. Chlorophyll Content

Medina and Lieth, Beitraege zur Biologie der Pflanzen, 1964

Primary Productivity of the Biosphere, (Lieth and Whittaker, Eds), Fig. 4-7, p. 102, 1975,

GPP vs. Chl

3.5 ▲ Canopy Chl o Maize 3.0 ♦ GPP/PARin ▲ Soybean

Relevance to climate

Gitelson et al., JGR, 2006

4-5 May, 2010 HyspIRI/GSFC

1.2

2.5

2

1.5

1

0.5

0

-5

0

Chred edge

Courtesy of Thomas Hilker

$ChI \rightarrow GPP \rightarrow CI$

Relevance to climate

Car/ChI → Respiration Coniferous forest, BC Canada

HyspIRI/GSFC

Courtesy of Thomas Hilker

Calibration and validation: ground "truth" **1. Non-destructive detection of pigment contents in plant leaves**

 $C_{pigment} \propto [R^{-1}(\lambda_1) - R^{-1}(\lambda_2)] \times R(\lambda_3)$

Gitelson et al., 2003

 710 - 770 - 770
 550 - 700 - 770

 Gitelson et al., 1994; 1996; 2003
 Gitelson et al., 2001, 2009

Gitelson et al., 2002

2. Non-destructive retrieval of chlorophylls, carotenoids and anthocyanins contents from canopy transmittance spectra

agitelson2@unl.edu