

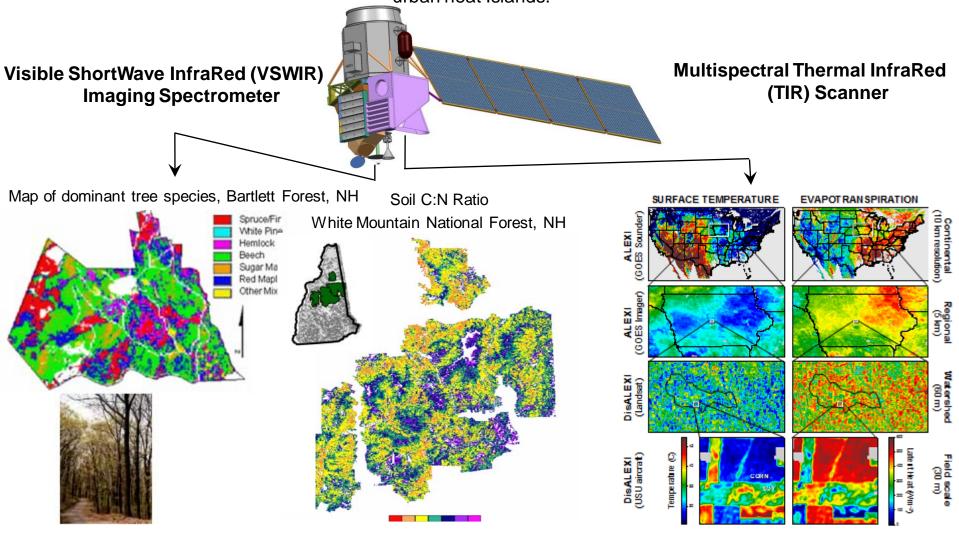
HyspIRI

VSWIR Science Measurement Baseline

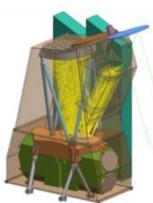
NASA Earth Science and Applications Decadal Survey

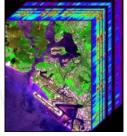
Robert O. Green and HyspIRI Team

HyspIRI Science Study Group


Mike Abrams	JPL	michael.j.abrams@jpl.nasa.gov	818-354-0937
Rick Allen	UID	rallen@kimberly.uidaho.edu	208-423-6601
Martha Anderson	USDA	Martha.Anderson@ars.usda.gov	301-504-6616
Greg Asner	Stanford	gpa@stanford.edu	650-462-1047
David Meyer	USGS EROS	dmeyer@usgs.gov	605-594-6046
Paul Bissett	FERI	pbissett@flenvironmental.org	813-866-3374 x102
Alex Chekalyuk	Lamont-Doh.	chekaluk@ldeo.columbia.edu	845-365-8552
James Crowley	USGS	jcrowley@usgs.gov	703-648-6356
Ivan Csiszar	UMD	icsiszar@hermes.geog.umd.edu	301-405-8696
Heidi Dierssen	U Conn.	heidi.dierssen@uconn.edu	860-405-9239
Friedmann Freund	Ames	_	650 604-5183
John Gamon	U A	friedemann.t.freund@nasa.gov	
		gamon@gmail.com	780-965-0345
Louis Giglio	UMD	louis_giglio@ssaihq.com	301 867-2030
Greg Glass	JHU	gglass@jhsph.edu	410-955-3708
Robert Green	JPL	rog@jpl.nasa.gov	818 354-9136
Simon Hook	JPL	simon.j.hook@jpl.nasa.gov	818-354-0974
James Irons	GSFC	James.R.Irons@nasa.gov	301-614-6657
Bob Knox	GSFC	Robert.G.Knox@nasa.gov	301-614-6656
John Mars	USGS	jmars@usgs.gov	703-648-6302
Betsy Middleton	GSFC	elizabeth.m.middleton@nasa.gov	301-614-6670
Peter Minnett	U. Miami	pminnett@rsmas.miami.edu	305-361-4104
Frank Muller Karger	U. MA Dart.	fmullerkarger@umassd.edu	508 999 8193
Scott Ollinger	UNH	scott.ollinger@unh.edu	508 999 8193
Thomas Painter	U. of Utah	painter@geog.utah.edu	303.888.7119
Anupma Prakash	UAF	prakash@gi.alaska.edu	907-474-1897
Dale Quattrochi	MSFC	dale.quattrochi@nasa.gov	256-961-7887
Vince Realmuto	JPL	Vincent.J.Realmuto@jpl.nasa.gov	818-354-1824
Dar Roberts	UCSB	dar@geog.ucsb.edu	805-893-2276
Dave Siegel	UCSB	davey@icess.ucsb.edu	805-893-4547
Phil Townsend	U of Wisc.	ptownsend@wisc.edu	608-262-1669
Kevin Turpie	GSFC	kevin.r.turpie@nasa.gov	301-286-9996
Steve Ungar	GSFC	stephen.g.ungar@nasa.gov	301-614-6674
Susan Ustin	UC Davis	susan@cstars.ucdavis.edu	530-752-0621
Rob Wright	UHI	wright@higp.hawaii.edu	808-956 9194
~			

NRC Decadal Survey - HyspIRI


Global vegetation species-type and physiological condition, including agricultural lands, for biosphere feedback and land-atmosphere interactions; Spectroscopically derived terrestrial land cover composition/albedo including snow, ice, dust climate interaction; Fire: fuel, occurrence, intensity and recovery globally, as well as volcano emissions; Fine spatial & temporal scale measures of surface temperature and energy balance, including urban heat Islands.



HyspIRI - Imaging Spectroscopy (VSWIR) Science Measurements

Mature Instrument concept: All components have flown in space.

Imaging spectrometer: 55kg / 41W

Schedule: 4 year phase A-D, 3 years operations (5 years consumables)

Full terrestrial coverage downlinked every 19 days

VQ1. Pattern and Spatial Distribution of Ecosystems and their Components

 What is the pattern of ecosystem distribution and how do ecosystems differ in their composition or biodiversity?

VQ2. Ecosystem Function, Physiology and Seasonal Activity

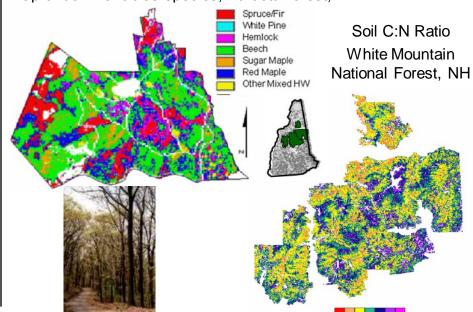
 What are the seasonal expressions and cycles for terrestrial and aquatic ecosystems, functional groups and diagnostic species? How are these being altered by changes in climate, land use, and disturbances?

VQ3. Biogeochemical Cycles

 How are biogeochemical cycles for carbon, water and nutrients being altered by natural and human-induced environmental changes?

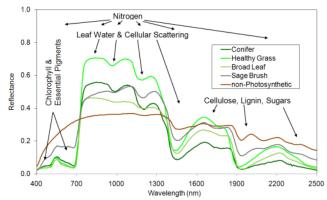
VQ4. Changes in Disturbance Activity

 How are disturbance regimes changing and how do these changes affect the ecosystem processes that support life on Earth?


VQ5. Ecosystem and Human Health

– How do changes in ecosystem composition and function affect human health, resource use, and resource management?

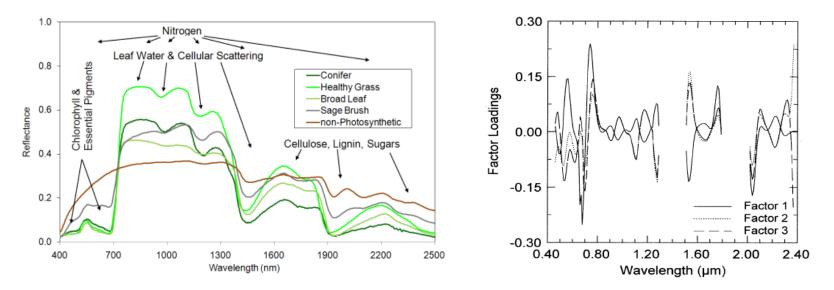
VQ6. Land Surface and Shallow Water Substrate Composition


- What is the land surface soil/rock and shallow water substrate composition?

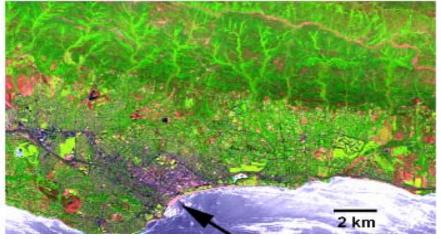
Map of dominant tree species, Bartlett Forest, NH

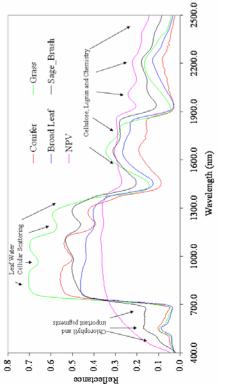
Measurement:

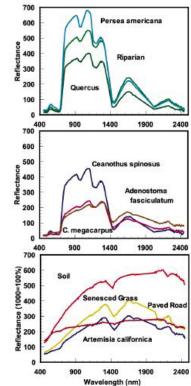
- 380 to 2500 nm at 10 nm
- Accurate 60 m resolution
- 19 days equatorial revisit
- Global land and shallow water



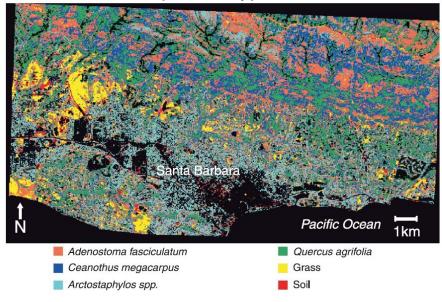
The Need for Continuous Spectral Measurements

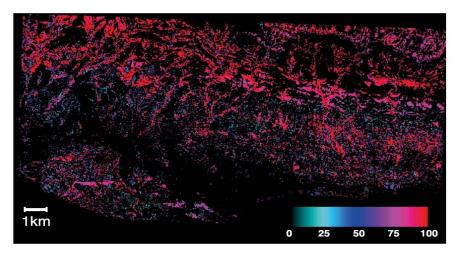



- Plant functional types and species have biochemical and biophysical properties that are expressed as reflectance absorption and scattering features spanning the spectral region from 380 to 2500 nm.
- Individual bands do not capture the diversity of biochemical and biophysical signatures of plant functional types, species or physiological condition.
- Changes in the chemical and physical configuration of ecosystems are expressed as changes in the contiguous spectral signatures related to plant functional types, physiological condition, vegetation health, and species distribution.
- Important atmospheric correction information as well as calibration feedback is contained within the spectral measurement.

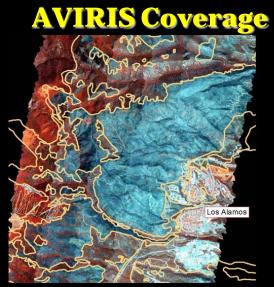


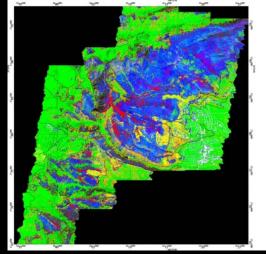
Vegetation Functional Type Analysis, Santa Barbara, CA


Dar Roberts, et al, UCSB

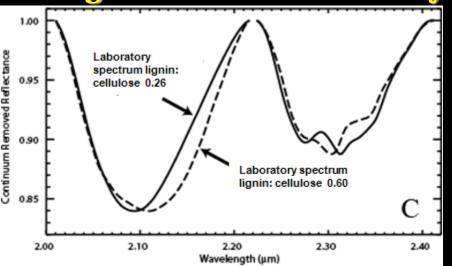


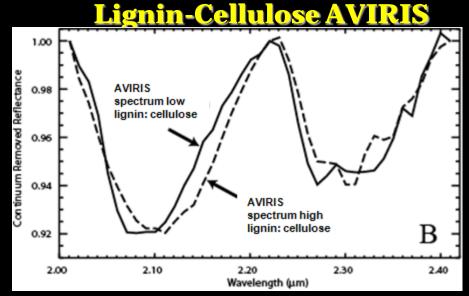
MESMA Species Type 90% accurate


Species Fractional Cover



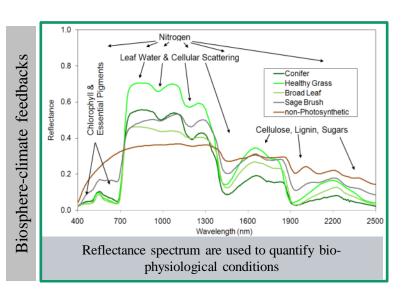
Example Measurement of Plant Biochemistry with Imaging Spectroscopy (Ray Kokaly, USGS)



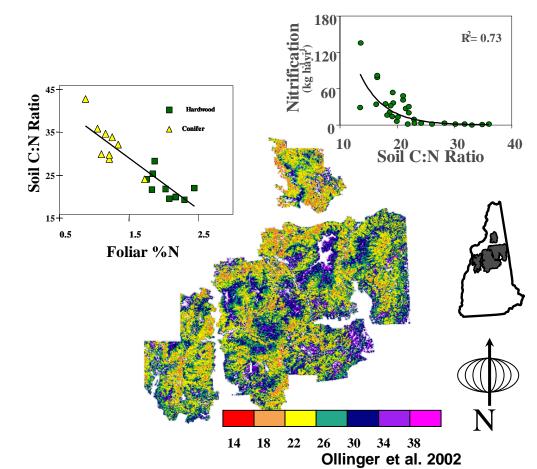


Spectral Composition Map

Lignin-Cellulose Laboratory



Ecosystem physiological conditions



Imaging spectroscopy measurements are required to measure the <u>physiological</u> <u>condition (PC)</u> of ecosystems for the global terrestrial biosphere to provide understanding and constraint of uncertainties in the climate change.

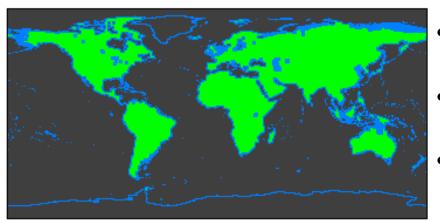
- Detect and quantify changes in biogeochemical cycles and processes (PC)
- Map and monitor productivity changes (PC) at seasonal and spatial scales relevant for policy decisions.
- Reduce uncertainties in ecosystem feedbacks from multiple stressors (T, precip., CO₂, N deposition, etc.) to Improve prediction of future ecosystem condition (PC).

Predicted Foliar Chemistry (PC) from Spectroscopy Is Used to Estimate Soil Nitrogen Cycling

FT Map Shenandoah National Park, USA

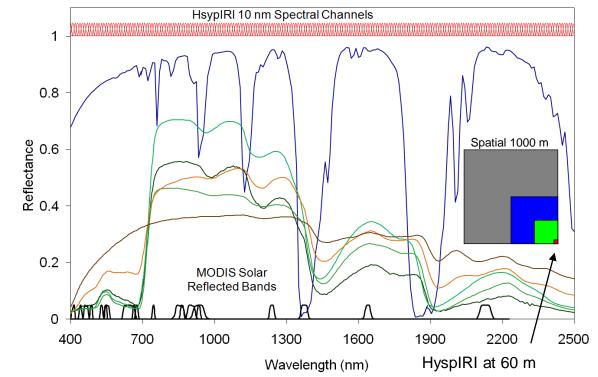
Pinus virginiana Pinus virginiana / deciduous mix Pinus rigida Pinus strobus Pinus strobus / Quercus mix Tsuga canadensis

Quercus rubra Quercus rubra - Quercus spp. - Carya Quercus prinus - Quercus coccinea Quercus coccinea / mix Quercus velutina / mix Quercus alba Quercus alba Quercus prinus - Quercus spp. / mix Quercus prinus - Acer rubrum / mix Quercus prinus Carya sp. Phil Townsend, U. of Wisc.



HyspIRI VSWIR – Science **Measurement Characteristics Spectral Radiometric Spatial** Uniformity **Temporal**

NASA



- Measure the global land and coastal/shallow water (> -50m).
- 19 day equatorial revisit to generate seasonal and annual products.
- Full terrestrial and shallow water data set returned.

 Measure the molecular absorption and constituent scattering signatures in the spectral range from 380 to 2500 nm at 10 nm, and at 60 m spatial sampling.

HyspIRI VSWIR Science Measurement Characteristics

Spectral

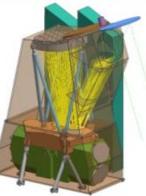
- Range
- Sampling
- Response

Accuracy

Radiometric

Range & Sampling Accuracy Precision (SNR) Linearity Polarization Scattered Light

Spatial


Range Cross-Track Samples Sampling Response

Uniformity

Spectral Cross-Track Spectral-IFOV-Variation 380 to 2500 nm in the solar reflected spectrum <= 10 nm {uniform over range} <= 1.2 X sampling (FWHM) {uniform over range} <0.5 nm

0 to 1.5 X max benchmark radiance, 14 bits measured >95% absolute radiometric, 98% on-orbit reflectance, 99.5% stability See spectral plots at benchmark radiances >99% characterized to 0.1 % <2% sensitivity, characterized to 0.5 % <1:200 characterized to 0.1%

>150 km >2500 <=60 m <=1.2 X sampling (FWHM)

>95% cross-track uniformity {<0.5 nm min-max over swath}</p>
>95% spectral IFOV uniformity {<5% variation over spectral range}</p>

HyspIRI VSWIR Science Measurements Characteristics

Temporal

Orbit Crossing Global Land Coast Repeat Rapid Response Revisit **Sunglint Reduction** Cross Track Pointing OnOrbit Calibration Lunar View Solar Cover Views Dark signal measurements Surface Cal Experiments

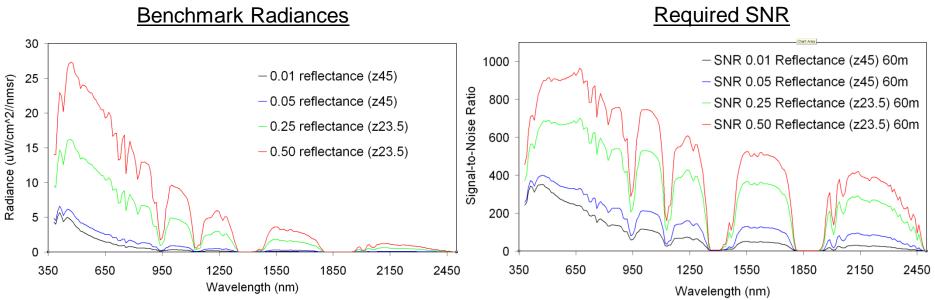
Data Collection

Land Coverage Water Coverage Solar Elevation Open Ocean/Ice Sheets Compression 10:30 am sun synchronous descending

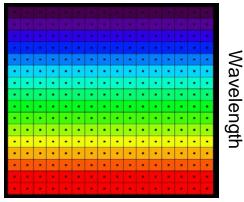
19 days at equator

3 days (cross-track pointing)

4 degrees in backscatter direction


- 1 per month {radiometric}
- 1 per day {radiometric}
- 1 per orbit and edge detector tracking
- 3 per year {spectral & radiometric}

Land surface above sea level excluding ice sheets Coastal zone -50 m and shallower 20 degrees or greater Averaged to 1km spatial sampling >=3.0 lossless


HyspIRI VSWIR Science Measurements Key SNR and Uniformity Requirements

Uniformity Requirement

Cross Track Sample

Depiction

- -Grids are the detectors
- -dots are the IFOV centers
- -Colors are the wavelengths

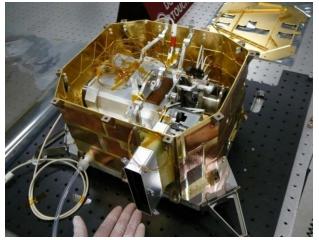
Requirement

Spectral Cross-Track

Spectral-IFOV-Variation

>95% cross-track uniformity {<0.5 nm min-max over swath}

>95% spectral IFOV uniformity {<5% variation over spectral range}


Heritage: NASA Moon Mineralogy Mapper

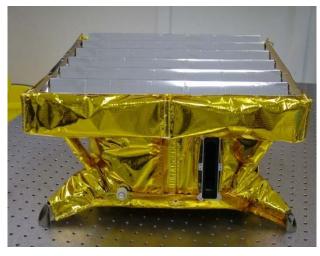
y = 0.0003x + 714.6

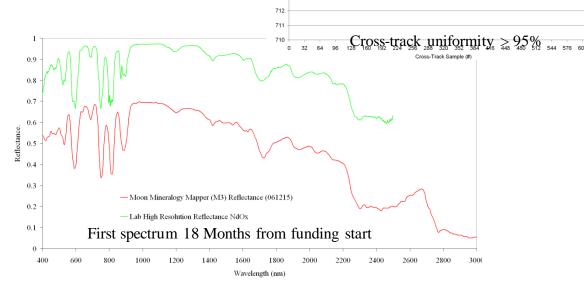
fwvl Linear (fi

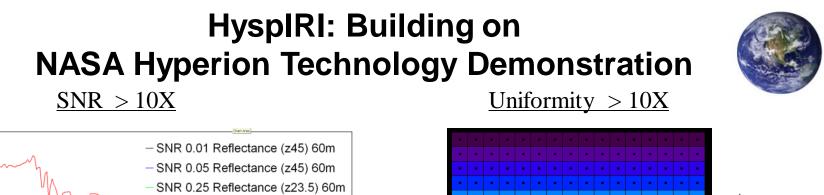
M3 Spectrometer

Passed Preship review 3 May 2007

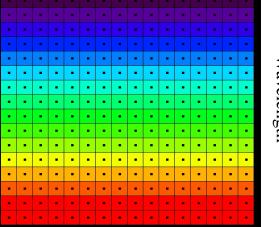
- Mouroulis Offner Design (HyspIRI)
- Convex e-beam grating (HyspIRI)
- 6604a MCT full range detector array, multiplexor & signal chain (HyspIRI)

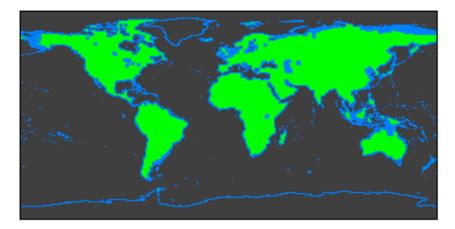

718


717


715

- Uniform slit (HyspIRI)
- 0.5 micron adjustment mounts lockable for flight
- Aligned to 95% cross-track uniformity (HyspIRI)
- Aligned to 95% spectral IFOV uniformity (HyspIRI)
- Meets high SNR requirements (HyspIRI)
- Passive radiator (HyspIRI)





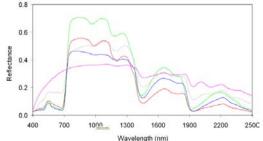
Cross Track Sample

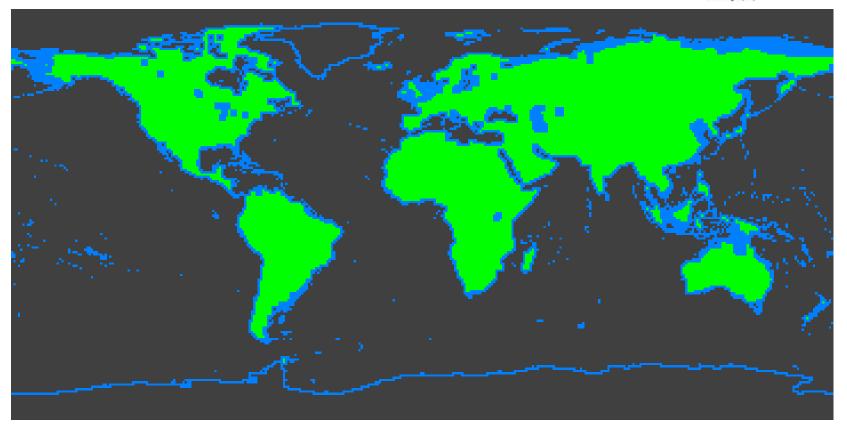
<u>Global Coverage >> 10X</u>

Signal-to-Noise Ratio - SNR 0.50 Reflectance (z23.5) 60m Wavelength (nm)

<u>Swath > 10X</u>

Soil C:N Ratio White Mountain National Forest, NH





HyspIRI: A Decadal Survey **Global** Mapping Mission (VSWIR)

- Full Spectrum 380 to 2500 at 10 nm
- 60 m spatial with 150 km swath
- Full terrestrial surface downlinked every 19 days

Oceans and ice sheets at 1 km

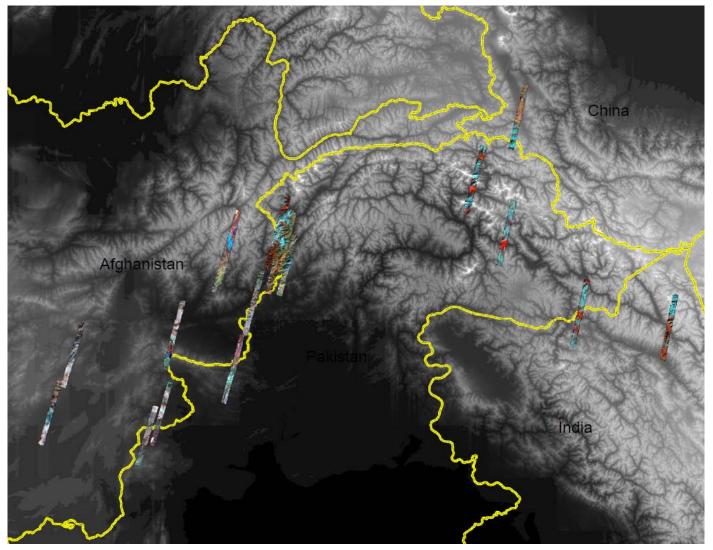
HyspIRI compared with possible International Imaging Spectroscopy Missions

Only HyspIRI provides the full spectrum of data required to address climatecarbon cycle feedbacks articulated in the NRC Decadal Survey

HyspIRI Provides Seasonal and Annual Global Coverage that Uniquely Addresses Critical Gaps in Climate Research and Ecosystem Understanding.

>100 years for international mission to equal 1 year of HyspIRI

Country	Instrument	Swat h km	Pixel Size, m	Terrestrial Coverage in 19 days	Repeat interval, days	TIR capability
USA	HyspIRI	150	60	100%	19	8 TIR bands
Germany	EnMAP	30	30	<1%		NO
Italy	PRISMA	30-60	20-30	<1%		NO
Japan?	ALOS3	30	30	<1%		NO
India?	IMS Resource Sat-3	25	25	<1%		1 TIR band


US, HyspIRI: a full spectral range (380 to 2500 at 10 nm), high SNR, uniform, 60m spatial with 150 km swath imaging spectrometer and multiband thermal imager (8 band thermal imager from 3-12 μm).

Other countries are occasionally mentioned (China, South Africa, South Korea, etc.). All are proposing first generation small sample process/application missions with scattered terrestrial coverage and no TIR imager

EO1-Hyperion Coverage for Himalaya Study

- Example of study for snow and ice science in the Himalaya with EO1-Hyperion
 - Coverage is a severe limitation of regional and global climate investigations.

• HyspIRI would measure the full area every 19 days returning all the data

HyspIRI VSWIR Science Measurement Summary

The National Research Council of the United States National Academies released the Decadal Survey: Earth Science and Applications from Space that included a global mapping imaging spectrometer as part of the HyspIRI Mission.

The NASA designated HyspIRI Science Study Group developed a set of science questions to address the call of the Decadal Survey including critical climate measurements.

From these science question as set of Science Traceability Matrixes were development with corresponding science measurement requirements.

A VSWIR imaging spectrometer instrument concept was developed to meet these science measurement requirements and provide a high heritage and low risk concept for acquiring the HyspIRI VSWIR science measurements.

The science measurement characteristics of the HyspIRI VSWIR instrument have been described in terms of: **Spectral, Radiometric, Spatial, Uniformity, Temporal**

The HyspIRI VSWIR science requires full coverage of the terrestrial and coastal areas at a 19 revisit to address key elements of the Decadal Survey science including critical climate measurements of the terrestrial biosphere.

Backup

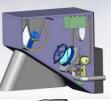
HyspIRI Concept - 2010

Payload

Science Instruments:

- VSWIR: Imaging Spectrometer
 - 380-2500 nm in 10 nm bands
 - 60m spatial resolution
 - Day-side (23% duty cycle)
 - 55 Kg, 41 W
- TIR: Thermal Infrared Scanner
 - 8 bands between 3-12 µm
 - 60m spatial resolution
 - Day and night-side (100% duty cycle)
 - 60 Kg, 103 W

Intelligent Payload Module (IPM)


- 24/7 Direct Broadcast capability
- subset of science data
- X-band @ 20 Mbps
- 11 Kg, 86 W

Implementation

Launch Date: ≥ 2016

Lifetime: 3 years, with consumables for 5 Cost Category: Low Cost Decadal Survey Partners: JPL, GSFC Mission Class: C, with selected redundancy Hardware Model: Protoflight

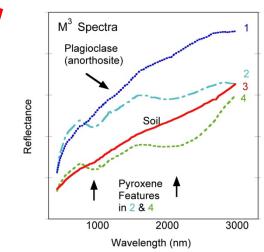
Mission Architecture

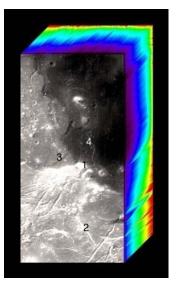
- Orbit: 626 km Sun-Synchronous, 10:30am LTDN
- Repeat: 19 day VSWIR / 5 day TIR
- **Downlink:** Contacts nearly every orbit to Svalbard (North) and Troll (Antarctica)
- Science Data: 5.7 Tbits/day
- Launch Vehicle: Taurus 3210, 2m fairing, 790 kg capability

Spacecraft

Launch Mass: 687 kg, JPL DP Margin: 30% Required Power: 680W, 7.1 m² array (965 W capability) P/L Data Rate: 384 Mbps Downlink Data Rate: 800 Mbps Dual-pol X-band Stabilization: 3-axis Pointing: Control =720 arcsec (per axis 3σ) Knowledge = 2 arcsec (Pitch/Yaw axis 3σ); 8 arcsec (Roll axis 3σ)

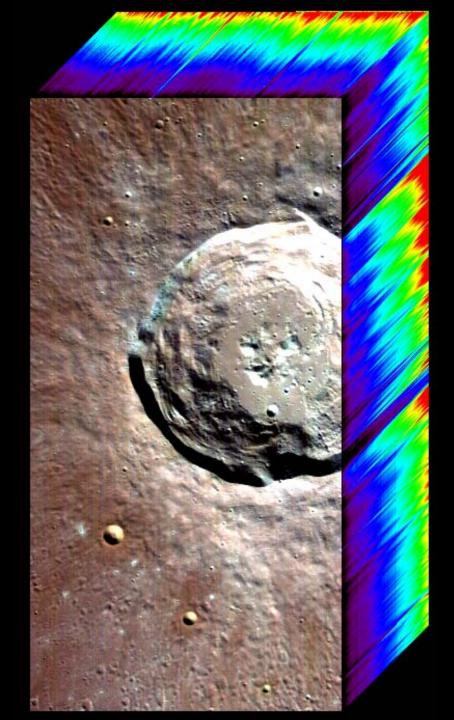
Stability = 5 arcsec/sec (per axis 3σ)


No new technology required


Heritage: M3 NASA Imaging Spectrometer

M3 Installed on ISRO Chandraayan-1 spacecraft, Launched 22 Oct 2008

• First light in lunar orbit 19 Nov 2008



M³ First Spectral Light 19 Nov 2008

Cover of Science 23 October 2009

R 2-µm absorption largely pyroxene

G Brightness

B 3-µm absorption OH/H2O

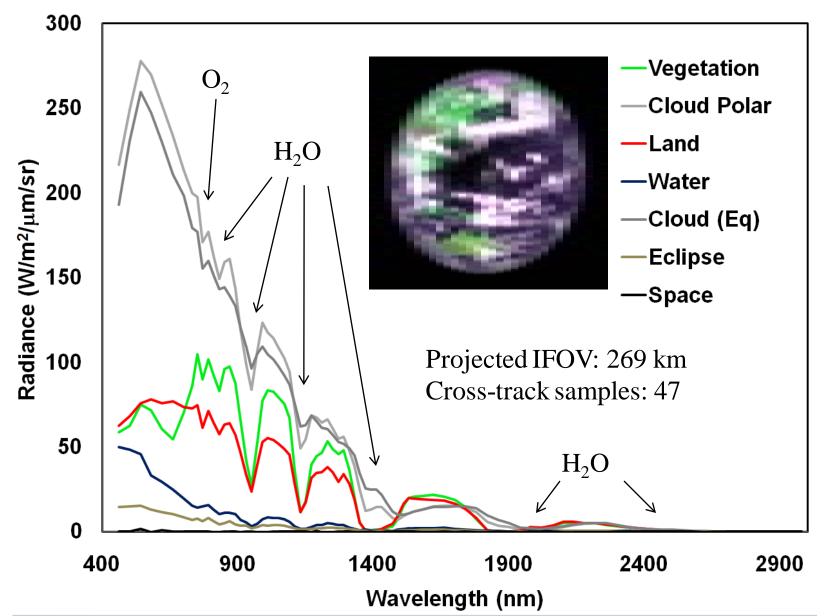



Image of Earth from the Moon acquired by the NASA Discovery Moon Mineralogy Mapper (M3) that is a guest instrument onboard the ISRO Chandrayaan-1 Mission to the Moon. Australia is visible in the lower center of the image. The image is presented as a false color composite with oceans dark blue, clouds white, and vegetation enhanced green. The data were acquired on the 22nd of July 2009.

M³ On-Orbit Spectral

